Accelerator Lattice Design - Part II Insertions

- Laboratory Exercise Ralph J. Steinhagen, CERN

 HERMAN ${ }^{\circ}$by Jim Unger

"I think my test results are a pretty good indication of your abilities as a teacher."

- Acknowledgements and credits to: W. Herr, B. Holzer, A. Streun, A. Wolski

Exercise I-1/2

- Design a Chasman-Green Double-Bend-Achromat

- Start with the doublet Q1+Q2, use the same constraints as during the day before.
- Assume a fixed cell length of $\sim 10-30 \mathrm{~m}$ \rightarrow get a reasonable optics with $100 \mathrm{~m}>\beta_{x}>\beta_{y}$ a the beginning and end of the cell
- Once you are happy insert the Q3 and D2 at the centre of the doublets
- The dipole D1 generates dispersion wave which is closed by dipole D2, which is 180° apart \rightarrow phase advance condition is steered with Q3 and distance between D1 \& D2 (hint: $\mathrm{M}_{180^{\circ} \text {-cell }}=\mathrm{M}_{\text {Drift }} \cdot \mathrm{M}_{\mathrm{Q} 3} \cdot \mathrm{M}_{\text {Drift }}$).
- Q1,Q2 are used to make β_{x} in D1 \& D2 small
- Leave some space ($\sim 5 \mathrm{~m}$) left and right of the Q1s to allow some space for undulators, RF cavities, or instrumentation.

Exercise I-2/2

- Design tips:
- there is only a narrow range of kQ1, kQ2, and Q3 for which the DBA converges \leftrightarrow many local optima \rightarrow need to guide MAD-X before you can do the regular cell matching (i.e. start with the linear approximations)
- The first step is thus very much iterative and it's (strongly) recommended that you first match the cell as a transmission line with fixed initial conditions
- i.e. $\beta_{x,} \beta_{y}$ being constant $\& \alpha_{x / y^{\prime}} \mu_{x / y}, D_{x / y}$, and $D_{x / y}^{\prime}$ being zero. Use the following line to compute the 'Twiss' call : twiss, file=test_output.twiss, betx=<your value>, alfx=0, mux=0, bety=<your value>, alfy=0, muy=0, $D X=0, D Y=0, D P X=0, D P Y=0$, deltap=0.0, $X=0, Y=0, P X=0, P Y=0$;
- Vary Q3, check that you reached the dispersion cancelling condition via:
- value, table(twiss, MB2, mux)-table (twiss, MB1, mux) ;
- Should be equal/very close to '0.5' (ie. phase advances given in units of 2π)
- Once you are happy with the symmetry of the initial conditions try to match the dispersion suppression and exact beta-function with the cell-matching, l.e use
- match, sequence=DBACell, betx=<your value>, alfx=0, mux=0, bety=<your value>, alfy=0, muy=0; // [..]
- and then simply: Twiss; match, sequence=DBACell;
- Check how your Q3 value compare with the theoretic linear approximation
- Enjoy!

Exercise II - Dispersion Suppressor (DS)

- Aim: we need (at least) two regions with low dispersion in our existing FoDo lattice to accommodate our RF system and an experiment (e.g. undulator or high-energy physics interation point).
- Insert two straight sections each consisting of at least cells (e.g. FoDo cells without bending magnets). Keep the same quadrupole focusing:
- Insert the two straight sections opposite in azimuth in the ring. Plot the results.
- The dispersion shall be well below (<1 m) along this straight section. Chose and implement one of the following options:
a) missing-dipole scheme (tip: for the simplest case you need to change $\Delta \mu_{\text {cell }}:=60^{\circ}$), or
b) changing the bending radius of some or all the bending magnets, or
c) Full Monty - independent quadrupole-based DS
- At this stage do not change the focusing properties of the arc cells.

Exercise III

- Start from the previous lattice and design a symmetric insertion with a low $-\beta$ section in a dispersion free region. The β should be small at least in one plane and should have a waist at an "interaction point".
- Two options:
- Try to design the insertion yourself
- Use an already prepared example sequence and try to match

