Electronics for Pedestrians Ralph J. Steinhagen, CERN

- Tutorial II/II -

"In theory, 'theory' and 'praxis' are the same, in praxis they aren't"

Exercises – your turn

"I was lying on the floor watching TV and my mom accidentally sucked the test answers out of my head while she was vacuuming."

Exercise I

- Diodes are probably the single most important non-linear devices in RF application.
 - a) Simulate and plot the V-I response curve for the following diodes (N.B. 'DC simulation', use 'DC voltage source' and 'Current Probes'):
 - 1N4002, 1N4148, 1N746, BAS40, BAS70, LED (IR, red, ...)
 - Specific diodes are found at: 'Tools \rightarrow Component Library'
 - Compare and discuss the differences
 - b) Simulate and plot the AC voltage-response of the above diodes connected to a 50 Ohm load (exciting frequency: 10 kHz, 1 MHz & 1GHz)
 - Which one would you use for RF applications and why?

Exercise II

- For the given schematic (N.B. this doesn't need to be simulated):
 - Explain its function.
 - Suggest a modification that loads the battery with a constant current of 10 mA.

Exercise III

Design a circuit schematics for a voltage doubler. Assume a series resistance of R_s=10 Ohm prior to the diode, a load resistance R_L=1 kOhm and parallel capacity C=1 uF. Simulate and plot

a) Transient response for a 1kHz AC voltage source (i.e. first 15 ms)b) Re-simulate at 2 MHz.

- Optional: design a full-size high-voltage source (i.e. Cockcroft-Walton, Greiner)
 - What do you reckon are the limitations of such circuits?

In the given amplifier circuit, the gate bias-voltage is U_{GS}=- 2 V and the drain-source voltage U_{DS}=15 V. The operating voltage +U is 25 V.

a) Compute R1 and R2 so that the drain current is 5 mA.

- b) "Build" the given schematic and verify the amplification gain for an input voltage of V_{pp} = 10, 100 and 1000 mV.
- c) What would be the impact of a capacitor in parallel to R2?

Exercise V

- Using the 741 opamp, design an inverted amplifier with a symmetric ±10
 V supply voltage, R1=100 Ohm input resistor and for an AC input voltage
 V_{pp} < 500 mV@1 kHz.
 - a) Simulate and plot the AC- and transient response for input frequencies ranging from 1 Hz to 10 MHz
 - b) Check the amplifier gain for the feedback resistor values R2=0.1, 1, 10, 1k, and 100 k Ω .
 - c) Confirm the relationship between gain and bandwidth
 - d) Are there significant offset-voltage effects?

Exercise VI

- Somebody drew up the schematic below:
 - What does the circuit do?
 - Assume an input signal $U_e(\omega,t)=U_0$ sin(ω ·t). Compute (analytically) the output signal $U_a(\omega,t)$. Then...
 - Simulate and confirm your hypothesis using Qucs.
 - How does the circuit behave for square or single/periodic pulses

Exercise VII – Optional

- Build a voltage stabiliser using an opamp and JFET
- Simulate and plot the performance.

Electronics for Pedestrians, ASAP'14 – ACAS School for Accelerator Physics, Melbourne, Ralph.Steinhagen@CERN.ch, 2014-01-13