Beam Instrumentation – Part II

Ralph J. Steinhagen, CERN

Acknowledgements: R. Jones, P. Forck & U. Raich

Overview

- Beam instrumentation are the 'eyes and ears' of accelerators.
- Part I: electro-magnetic pick-ups (yesterday)
 - Beam intensities: Faraday-Cup, Fast-BCT, DC-BCT, WCM
 - Beam position: position and long. profile: Button-, Strip-line-, and Cavities
- Part II: beam loss and transverse beam profile
 - SEMs, wire scanner, OTR screens, luminescence, synch-light
 - Ionisation chamber, diodes, diamonds, scintillators, (cherenkov)
 - Special ultra-fast devices: electro-optical sampling & streak-camera
- An accelerator can never be better than the instruments measuring its performance!

 \rightarrow Important skill to assess whether beam observations are 'new/known physics', 'instrumental', or to guide whether/how performance can be improved.

Figure of Merit for most Accelerators

For a collider – luminosity L_{peak}:

For a synchrotron-light source – Brilliance B:

$$B \sim \frac{N_{photons}}{A \cdot d \varphi d \theta} \sim \frac{N_1 \rightarrow N_1^2}{\pi \sigma_x \sigma'_x \sigma_y \sigma'_y} \text{ Increase this } \rightarrow \text{ intensity instrumentation} \\ \text{Decrease this } \rightarrow \text{ profile instrumentation} \\ \text{(todays focus)} \text{ (todays focus)} \text{ (todays focus)}$$

The Typical Instruments

- Beam Intensity
 - Faraday cups, beam current transformers, wall-current monitors
- Beam Position
 - electrostatic or electromagnetic pick-ups and related electronics
- Beam Profile
 - secondary emission grids and screens
 - wire scanners
 - synchrotron light monitors
 - ionisation and luminescence monitors
 - Femto-second diagnostics for ultra short bunches
- Beam Loss
 - Cherenkov optical fibre, ionisation chambers or pin diodes
- Machine Tune, Chromaticity and Luminosity \rightarrow diagnostics tutorial

Secondary Emission (SEM) Grids

- When the beam passes through secondary electrons are ejected from the wires
- The liberated electrons are removed using a polarisation voltage

- The current flowing back onto the wires is measured
- One amplifier/ADC chain is used for each wire

Profiles from SEM grids

- Charge density measured from each wire gives a projection of the beam profile in either horizontal or vertical plane
- Resolution is given by distance between wires
- Used only in low energy linacs and transfer lines as heating is too great for circulating beams

Wire Scanners

- A thin wire is moved across the beam
 - has to move fast to avoid excessive heating of the wire and/or beam loss
- Detection
 - Secondary particle shower detected outside the vacuum chamber using a scintillator/photo-multiplier assembly
- Secondary emission current detected as for SEM grids
 - Correlating wire position with detected signal gives the beam profile

Beam Profile Monitoring using Screens

- Optical Transition Radiation
 - Radiation emitted when a charged particle beam goes through the interface of 2 media with different dielectric constants
 - surface phenomenon allows the use of very thin screens (~10mm)

Profile Monitoring using Screens

- Screen Types
 - Luminescence Screens
 - destructive (thick) but work during setting-up with low intensities
- Optical Transition Radiation (OTR) screens
 - much less destructive (thin) but require higher intensity

Sensitivities measured with protons with previous screen holder, $\vec{z} = \vec{z}$ normalised for 7 px/ σ

Туре	Material	Activator	Sensitivity	
Luminesc.	CsI	T1	6 10 ⁵	
"	Al_2O_3	0.5%Cr	3 107	
دد	Glass	Ce	3 109	
**	Quartz	none	6 10 ⁹	
OTR [bwd]	Al		2 1010	
**	Ti		2 1011	
~~	С		2 1012	
Luminesc. GSI	P43: Gd ₂ O ₂ S	Tb	2 107	

Light output from various Scintillating Screens

Example: Color CCD camera

- very different light yield i.e. photons per ion's energy loss
- different wavelength of emitted light

Profile Monitoring using Screens

Usual configuration

- Combine several screens in one housing e.g.
 - Al₂O₃ luminescent screen for setting-up with low intensity
 - Thin (~10um) Ti OTR screen for high intensity measurements
 - Carbon OTR screen for very high intensity operation

Advantages compared to SEM grids

- allows analogue camera or CCD acquisition
- gives two dimensional information
- high resolution: $\sim 400 \times 300 = 120'000$ pixels for a standard CCD
- more economical
 - Simpler mechanics & readout electronics
- time resolution depends on choice of image capture device
 - From CCD in video mode at 50Hz to Streak camera in the GHz range

Luminescence or Rest-Gas-Ionisation Profile Monitor

Luminescence or Rest-Gas-Ionisation Profile Monitor

CERN-SPS Measurements Profile Collected every 20ms Local Pressure at ~5×10-7 Torr

170,00

The Synchrotron Light Monitor

The Synchrotron Light Monitor

Measuring Short Bunch-Lengths

- Hadron accelerators:
 - σ_t ≈ 0.1 ... 250 ns ↔ bunch lengths of few cm to tens of m (!!)
 - \rightarrow Electro-magnetic pick-ups, e.g. wall-current- or strip-line monitors
- Next Generation FELs & Linear Colliders
 - Use ultra short bunches to increase brightness or improve luminosity

 Q: How does one measure such short bunches?

p+@PSB	~250 ns		
p+@LHC	0.1-1 ns		
H- @ SNS	100ps		
e-@ILC	500fs		
e- @ CLIC	130fs		
e- @ XFEL	80fs		
e- @ LCLS	<75fs		

Streak-Camera Principle

- Idea: a mini accelerator or inverse cathode ray tube (old TV)
 - typical resolution: $\sigma_t \sim 1 \text{ ps}$ (Hamamatsu FESCA-200 $\sigma_t = 0.2 \text{ ps}$)

Streak Camera Realisation

Streak Camera Results

APS kicker-induced synchro-betatron motion courtesy Bingxin Yang, ANL

Electro-Optic Sampling – Non Destructive

Transverse Deflecting Cavity

- Working principle very similar to streak camera
 - ie. without photo luminescent screen causing a slow photo-response
 - destructive measurement \rightarrow typ. placed in dedicated diagnostics sections
- State-of-the-art bunch length resolutions¹: $\sigma_t \approx 1.3$ fs

¹Patrick Krejcik,"Commissioning the New LCLS X-band Transverse Deflecting Cavity with Femtosecond Resolution", IBIC'13, http://www.ibic2013.org/prepress/talks/tual2_talk.pdf

The Typical Instruments

- Beam Intensity
 - Faraday cups, beam current transformers, wall-current monitors
- Beam Position
 - electrostatic or electromagnetic pick-ups and related electronics
- Beam Profile
 - secondary emission grids and screens
 - wire scanners
 - synchrotron light monitors
 - ionisation and luminescence monitors
 - Femto-second diagnostics for ultra short bunches
- Beam Loss
 - Cherenkov optical fibre, ionisation chambers or pin diodes
- Machine Tune, Chromaticity and Luminosity \rightarrow diagnostics tutorial

Beam Loss Monitoring – Requirements I/II

Life isn't perfect so aren't accelerators

1) Machine Protection Protection:

 interlock signal for fast (& safe) beam extraction to protect sensitive devices (e.g. quenches in super-conducting magnets, de-magnetisation of undulators)

2) Beam diagnostics:

- optimize transmission to the target.
- Beam alignment to prevent unnecessary activation and complicated material handling
 → ALARA principle (As Low As Reasonably Achievable accelerator operation philosophy)

3) Accelerator physics:

- using these sensitive particle detectors.

Energy Loss of Particles in Matter

Beam Loss Monitoring – Requirements II/II

- Beam Loss Types:
 - Irregular or fast losses by malfunction of devices (magnets, cavities etc.)
 → BLM as online control of the accelerator functionality and interlock generation.
 - Intermediate
 - Slow regular losses
 - e.g. by lifetime limits or due to collimator \rightarrow BLM used for alignment.
 - ALARA: As Low As Reasonably Achievable → minimise unnecessary activation of the machine complicating material handling
- Requirements for BLM:
 - High sensitivity to detect behaviour of beam halo e.g. at collimator
 - Large dynamic range:
 - low signal during normal operation, but very large signal in case of malfunction
 - detectable without changing the full-scale-range, e.g. scintillators from 10²...10⁷/s in counting mode.

The Large Hadron Collider LHC Installed in the LEP tunnel, 27 km, Depth of 70-140 m

27 km Circumference – 1232 LHC dipole magnet

B field 8.3 T (11.8 kA) @ 1.9 K (super-fluid Helium)

two-in-one magnet design:

two beam tubes with an opening of 56 mm (210 mm separation)

Operating challenges:
Very low quench levels (~ mJ/cm³) in an environment that stores MJ → GJ
Control of particle beam stability and losses is paramount!

Stored Beam Energies

Quench Levels	Units	Tevatron	RHIC	HERA	LHC
Instant loss (0.01 - 10 ms)	[mJ/cm ³]	4.5	18	2.1 - 6.6	87
Steady loss (> 100 s)	[mW/cm ³]	75	75		5.3

 LHC superconducting dipoles may loose superconducting state ("quench") minimum quench energy E_{MQE} @7 TeV for t~10 – 20 ms

 E_{MQE} < 30 mJ/cm⁻³ vs. E_{stored} = 350 MJ/beam

- \rightarrow sufficient to quench all magnets and/or may cause serious damage
- requires excellent control of particle losses

Example: un-controlled vs. controlled energy release

Beam Loss Detectors

- Role of a BLM system:
 - Protect the machine from damage
 - Dump the beam to avoid magnet quenches (for SC magnets)
 - Diagnostic tool to improve the performance of the accelerator
- Common types of monitor
 - Long ionisation chamber (charge detection)
 - Up to several km of gas filled hollow coaxial cables
 - Position sensitivity achieved by comparing direct & reflected pulse
 - e.g. SLAC 8m position resolution (30ns) over 3.5km cable length
 - Dynamic range of up to 10⁴
 - Fibre optic monitors
 - Similar layout with electrical signals replaced by Cerenkov light

Beam Loss Detectors

- Common types of monitor (cont)
 - Short ionisation chamber (charge detection)
 - Typically gas filled with many metallic electrodes and kV bias
 - Speed limited by ion collection time tens of microseconds
 - Dynamic range of up to 10⁸

Beam Loss Detectors

- Common types of monitor (cont)
 - PIN photodiode (count detection)
 - Detect MIP crossing photodiodes
 - Count rate proportional to beam loss
 - Speed limited by integration time
 - Dynamic range of up to 10⁹

<u>Beam Loss Detectors – New</u> Materials

- Diamond Detectors (CVD)
 - Fast & sensitive
 - Used in LHC to distinguish bunch by bunch losses
 - Investigations now ongoing to see if they can work in cryogenic conditions

BLM Threshold Level Estimation

- Beam instrumentation are the 'eyes and ears' of accelerators.
- Part I: electro-magnetic pick-ups
 - Beam intensities: Faraday-Cup, Fast-BCT, DC-BCT, WCM
 - Beam position: position and long. profile: Button-, Strip-line-, and Cavities
- Part II: beam loss and transverse beam profile
 - SEMs, wire scanner, OTR screens, luminescence, synch-light
 - Special ultra-fast devices: electro-optical sampling & streak-camera
 - Cherenkov fibre, Ionisation chamber, diodes, diamonds, scintillators
- An accelerator can never be better than the instruments measuring its performance!

 \rightarrow Important skill to assess whether beam observations are 'new/known physics', 'instrumental', or to guide whether/how performance can be improved.