Beam Instrumentation – Part I

Ralph J. Steinhagen, CERN

Acknowledgements: R. Jones, P. Forck & U. Raich

Science: High-Energy-Physics Understand the World in its most fundamental form ...

1 H	Refined Periodic Table of Elements								2 He								
3	4 Pe		250	JU y	ear	s la	iter					5	6	7 N	8	9	10
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	г 17 СІ	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 -103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Known in antiquity

also known when (akw) Lavoisier published his list of elements (1789)

akw Mendeleev published his periodic table (1869)

akw Deming published his periodic table (1923)

akw Seaborg published his periodic table (1945) also known (ak) up to 2000 ak to 2012

First Particle Physics Experiment: 'Atoms' are not fundamental Particles

1911

Rutherford-Geiger–Marsden experiment: found nuclei in the atom by firing alpha particles at gold foil and observing that most pass and few bounce back

What are Particle Beams?

What is a Particle Beam?

- Wikipedia: "... is a stream of charged or neutral particles in many cases moving at near the speed of light"
- Three different beam categories:

Overview

- Beam instrumentation are the 'eyes and ears' of accelerators.
- Part I: electro-magnetic pick-ups
 - Beam intensities: Faraday-Cup, Fast-BCT, DC-BCT, WCM
 - Beam position: position and long. profile: Button-, Strip-line-, and Cavities
- Part II: beam loss and transverse beam profile \rightarrow tomorrow
 - SEMs, wire scanner, OTR screens, luminescence, synch-light
 - Ionisation chamber, diodes, diamonds, scintillators, (cherenkov)
 - Special ultra-fast devices: electro-optical sampling & streak-camera
- An accelerator can never be better than the instruments measuring its performance!

 \rightarrow Important skill to assess whether beam observations are 'new/known physics', 'instrumental', or to guide whether/how performance can be improved.

The Typical Instruments

- Beam Intensity
 - Faraday cups, beam current transformers, wall-current monitors
- Beam Position
 - electrostatic or electromagnetic pick-ups and related electronics
- Beam Profile
 - secondary emission grids and screens
 - wire scanners
 - synchrotron light monitors
 - ionisation and luminescence monitors
 - Femto-second diagnostics for ultra short bunches
- Beam Loss
 - ionisation chambers or pin diodes
- Machine Tune, Chromaticity and Luminosity \rightarrow diagnostics tutorial

Intensity Measurement – Faraday Cup I/II

- Intercepts the full beam and measures it's charge → acceptable in linacs and at the source
- Can measure very low intensities (≈1 pA)
- Independent on transverse or longitudinal beam structure
- Only for low energy particles

Intensity Measurement – Faraday Cup II/II

- Creation of secondary electrons of low energy (below 20 eV) → repelling electrode (≈100 V)
- Water cooling needed for higher beam Intensities

Intensity Measurement – Current Transformers

Fields are very low

Capture magnetic field lines with cores of high relative permeability

(CoFe based amorphous alloy Vitrvac: μ_r = 105)

$$I_{\text{beam}} = \frac{\text{qeN}}{\text{t}} = \frac{\text{qeN}\beta\text{c}}{1} \qquad L = \frac{\mu_0\mu_r}{2\pi}lN^2\ln\frac{r_0}{r_i}$$

The ideal transformer

The AC Transformer

Fast Current Transformer Principle

LHC Fast Current Transformers

Acquisition Electronics

- AC transformers can be extended to very low frequency but not to DC (no dl/dt!)
 - DC measurement is required in storage rings to assess un-captured beam intensities (mostly hadrons) and bunches in non-nominal buckets (all)
- DC operation principle:
 - take advantage of non-linear magnetisation curve
 - use two identical cores modulated with opposite polarities

DCCT Principle – Case 1: no beam

DCCT Principle – Case 2: with beam

Zero Flux DCCT Schematic

Measuring Beam Position – The Principle

Wall Current Monitor – The Principle

Wall Current Monitor – Beam Response

SPS/LHC Wall Current Monitor

¹T. Linnecar, "The high frequency longitudinal and transverse pick-ups used in the SPS", CERN-SPS/ARF/78-17, 1978 ²Th. Bohl, "The APWL Wideband Wall Current Monitor", CERN-BE-2009-006, 2009 ³R. Cappi et al., "Single-Shot Longitudinal Shape Measurements [..]", CERN-PS-87-31-PSR, PAC 1987, 1987 Beam Instrumentation I, ASAP'14 – ACAS School for Accelerator Physics, Melbourne, Ralph.Steinhagen@CERN.ch, 2014-01-13

Electrostatic Monitor – The Principle

Shoebox Pick-Up I/II

Electrostatic Beam Monitor – Response

Electrostatic Pick-up – Button

Low cost \Rightarrow most popular
 Non-linear

For Button with Capacitance $C_e \&$ Characteristic Impedance R_0

Transfer Impedance:

$$Z_{T(f >> f_c)} = \frac{A}{(2\pi r) \times c \times C_e}$$

Lower Corner Frequency:

$$f_L = \frac{1}{2\pi R_0 C_e}$$

Real-World Example: The LHC Button

Strip-Line Pick-Up

 piece of transmission-line parallel to the beam
 ↔ broad-band antenna

- transverse impedance Z_t depends on bunch length σ_t

$$Z_{t}(\omega) = \frac{Z_{strip} a}{2\pi} \cdot e^{\frac{-(\omega\sigma_{t})^{2}}{2}} \cdot \sin(\frac{\omega l}{c}) \cdot e^{j(\frac{\pi}{2} - \frac{\omega l}{c})}$$

Strip-Line Pick-Up – Example SPS

animation courtesy B Salvant (2010)

"Classic" Detection Scheme

Classic detection approach: Σ-Δ hybrid

$$\rightarrow \frac{X}{R} \approx \frac{\Delta}{\Sigma} = \frac{I_L - I_R}{I_L + I_R}$$
 R: pickup half-aperture

- Eliminates most 'common mode' signal (e.g. intensity),
 - However ADC needs still to accommodate 'common mode' signals due to:
 - Closed orbit offset
 - 2nd order: intensity bleed-trough intrinsic to any Σ - Δ hybrid

Improving the Precision for Next Generation Accelerators

- Standard BPMs give intensity signals which need to be subtracted to obtain a difference which is then proportional to position
 - Difficult to do electronically without some of the intensity information leaking through
 - When looking for small differences this leakage can dominate the measurement
 - Typically 40-80dB (100 to 10000 in V) rejection [▲] tens micron resolution for typical apertures
- Solution cavity BPMs allowing sub micron resolution
 - Design the detector to collect only the difference signal
 - Dipole Mode TM11 proportional to position & shifted in frequency with respect to monopole mode

Today's State of the Art BPMs

Obtain signal using waveguides that only couple to dipole mode
 Further suppression of monopole mode

Prototype BPM for ILC Final Focus

Required resolution of 2nm (yes, 'nano'!) in a 6×12mm diameter beam pipe Achieved World Record (so far!) resolution of 8.7nm at ATF2 (KEK, Japan)

Analog Front-End Electronics Criteria

- Accuracy
 - mechanical and electromagnetic errors
 - electronic components
- Resolution
- Stability over time
- Sensitivity and Dynamic Range
- Acquisition Time
 - measurement time
 - repetition time
- Linearity
 - aperture & intensity
- Radiation tolerance

Analog Front-End Electronics Processing Families

Linearity Comparison

Amplitude to Time Normalisation

BPM Acquisition Electronics Amplitude to Time Normaliser

Advantages

Fast normalisation (< 25ns)

- bunch to bunch measurement
- Signal dynamic independent of the number of bunches
 - Input dynamic range ~45 dB
 - No need for gain selection
- Reduced number of channels
 - normalisation at the front-end
- ~10 dB compression of the position dynamic due to the recombination of signals
- Independent of external timing
- Time encoding allows fibre optic transmission to be used

Limitations

- Currently reserved for beams with empty RF buckets between bunches e.g.
- LHC 400MHz RF but 25ns spacing
 - 1 bunch every 10 buckets filled
 - tight time adjustment required
- No Intensity information
- Propagation delay stability and switching time uncertainty are the limiting performance factors

What one can do with such a System

Used in the CERN-SPS and LHC for electron cloud & instability studies

Summary

- Beam instrumentation are the 'eyes and ears' of accelerators.
- Part I: electro-magnetic pick-ups
 - Beam intensities: Faraday-Cup, Fast-BCT, DC-BCT, WCM
 - Beam position: position and long. profile: Button-, Strip-line-, and Cavities
- Part II: beam loss and transverse beam profile \rightarrow tomorrow
 - SEMs, wire scanner, OTR screens, luminescence, synch-light
 - Special ultra-fast devices: electro-optical sampling & streak-camera
 - Cherenkov fibre, Ionisation chamber, diodes, diamonds, scintillators
- An accelerator can never be better than the instruments measuring its performance!

 \rightarrow Important skill to assess whether beam observations are 'new/known physics', 'instrumental', or to guide whether/how performance can be improved.

Summary

For a successful construction and operation of an accelerator, the understand and right balance of all disciplines is required!

Additional Slides

Beam Position Measurement Principle

- Several BPM design possibilities:
 - wall-current, shoebox, button, strip-line, resonant Schottky pickups, ...
- Pick-up response¹:

$$I_{L/R}(t) = \frac{I_{\omega}(t)}{2\pi} \left[2\psi \mp 2\frac{x}{R}\sin(\psi) + \frac{x^2 - y^2}{R^2}\sin(2\psi) + h.o. \right]$$

longitudinal beam signal

transverse beam signal

mip.//cas.web.cem.ch/cas/rrance-2000/Dourdan-alter.min

¹R. Littauer, *"Beam Instrumentation"*, *SLAC Summer School*, 1982. (p.902) ²D. McGinnis, *"The Design of Beam Pickup and Kickers"*, BIW'94, 1994 ³G. Vismara, *"Signal Processing for Beam Position Monitors"*, CERN-SL-2000-056-BI

Comparison Shoe-Box and Button BPM

	Shoe-Box BPM	Button BPM				
Precaution	Bunches longer than BPM	Bunch length comparable to BPM				
BPM length (typical)	10 to 20 cm length per plane	Ø1 to 5 cm per button				
Shape	Rectangular or cut cylinder	Orthogonal or planar orientation				
Bandwidth (typical)	0.1 to 100 MHz	100 MHz to 5 GHz				
Coupling	1 M Ω or $\approx 1 \text{ k}\Omega$ (transformer)	50 Ω				
Cutof ffrequency (typical)	0.01 10 MHz (<i>C</i> =30100pF)	0.3 1 GHz (<i>C</i> =210pF)				
Linearity	Very good, no x-y coupling	Non-linear, x-y coupling				
Sensitivity	Good, care: plate cross talk	Good, care: signal matching				
Usage	At proton synchrotrons,	All electron acc., proton Linacs, f_{rf} >				
	$f_{rf} < 10 \text{ MHz}$	100 MHz				

Vacuum Transitions – Simulation

Different uses of Beam Diagnostics

- Regular crude checks of accelerator performance
 - Beam intensity \rightarrow Faraday cups, current transformers, wall-current monitors

beam lines

electron ring

x-ray sources

Australian Synchrotron

- Beam losses/radiation levels
- Standard regular measurements
 - Emittance measurement
 - Beam position & trajectories
 - Tune & Chromaticity
- Sophisticated measurements
 e.g. during machine development sessions
 - May require offline evaluation
 - May be less comfortable

Example: Diagnostics Bench for the Commissioning of an RFQ

