Architectural Review of the LHC Orbit & Tune Feedback Systems, May 7th, 2013: After three Years of LHC Operation

Specific Orbit- and Q/Q'-Feedback Architecture Ralph J. Steinhagen, **CERN, Beam Instrumentation Group** Database settings operation.other user CMW Service Unit Server-Tasks Shared-Memory **RT-tasks** Central Timing CS-CCR-OFSU Generator CFC-S[RX]X-Rxx CS-CCR-OFC CFV-SIRX1x-BPMB CTR СТR buffer etc buffer et PPC DAB DAB PC-CO ► c-alg. **BI-Frontend** Feedback Controller **PC-Gateways** 6 COD/gateway beam response

- 'Divide and Conquer' feedback controller design approach:
 - 1 Compute steady-state corrector settings $\vec{\delta}_{ss} = (\delta_{1,...,} \delta_{n})$ based on measured parameter shift $\Delta x = (x_{1,...,} x_{n})$ that will move the beam to its reference position for t $\rightarrow \infty$.
 - 2 Compute a $\vec{\delta}(t)$ that will enhance the transition $\vec{\delta}(t=0) \rightarrow \vec{\delta}_{ss}$
 - 3 Feed-forward: anticipate and add deflections $\vec{\delta}_{\it ff}$ to compensate changes of well known and properly described sources

(N.B. here G(s) contains the process and monitor response function)

space domain

time

domain

Space Domain:

Effects on orbit, Energy, Tune, Q' and C⁻ can essentially cast into matrices:

$$\Delta \vec{x}(t) = \underline{R} \cdot \vec{\delta}(t) \quad \text{with} \quad R_{ij} = \frac{\sqrt{\beta_i \beta_j}}{2\sin(\pi Q)} \cdot \cos(\Delta \mu_{ij} - \pi Q) + \frac{D_i D_j}{C(\alpha_c - 1/\gamma^2)}$$

matrix multiplication

- LHC matrices' dimensions:

$$\underline{R}_{orbit} \in \mathbb{R}^{1070 \times 530} \quad \underline{R}_{Q} \in \mathbb{R}^{2 \times 16} \quad \underline{R}_{Q'} \in \mathbb{R}^{2 \times 32} \quad \underline{R}_{C^{-}} \in \mathbb{R}^{2 \times 10/12}$$

- control consists essentially in inverting these matrices:

$$\|\vec{x}_{ref} - \vec{x}_{actual}\|_2 = \|\underline{R} \cdot \vec{\delta}_{ss}\|_2 < \epsilon \rightarrow \vec{\delta}_{ss} = \tilde{R}^{-1} \Delta \vec{x}$$

- Some potential complications:
 - Singularities = over/under-constraint matrices, noise, element failures, spurious BPM offsets, calibrations, ...
 - Time dependence of total control loop
- After this abstraction: Orbit, Energy, Q/Q'-FBs are basically the same

Linear algebra theorem*:

 though decomposition is numerically more complex final correction is a simple vector-matrix multiplication:

$$\vec{\delta}_{ss} = \tilde{R}^{-1} \cdot \Delta \vec{x} \quad with \quad \tilde{R}^{-1} = \underline{V} \cdot \underline{\lambda}^{-1} \cdot \underline{U}^T \quad \Leftrightarrow \quad \vec{\delta}_{ss} = \sum_{i=0}^n \frac{a_i}{\lambda_i} \vec{v}_i \quad with \quad a_i = \vec{u}_i^T \Delta \vec{x}$$

- numerical robust, minimises parameter deviations $\Delta x \text{ and } circuit$ strengths δ
 - Easy removal of singularities, (nearly) singular eigen-solutions have $\lambda_i \sim 0$
 - to remove those solution: if $\lambda_i \approx 0 \rightarrow 1/\lambda_i := 0'$
 - discarded eigenvalues corresponds to solution pattern unaffected by the FB

- Initially: Truncated-SVD (set λ_i^{-1} := 0, for i>N)
 - not without issues: removed λ_i allowed local bumps creeping in (e.g. collimation)
- **Regularised-SVD** (Tikhonov/opt. Wiener filter with $\lambda_i^{-1} := \lambda_i / (\lambda_i^2 + \mu), \mu > 0$)
 - more robust w.r.t. optics errors and mitigation of BPM noise/errors
 - \rightarrow allowed re-using same ORM for injection, ramp and 10+ squeeze steps

- 'Divide and Conquer' feedback controller design approach:
 - 1 Compute steady-state corrector settings $\vec{\delta}_{ss} = (\delta_1, ..., \delta_n)$ based on measured parameter shift $\Delta x = (x_1, ..., x_n)$ that will move the beam to its reference position for t $\rightarrow \infty$.
 - 2 Compute a $\vec{\delta}(t)$ that will enhance the transition $\vec{\delta}(t=0) \rightarrow \vec{\delta}_{ss}$
 - 3 Feed-forward: anticipate and add deflections $\vec{\delta}_{\it ff}$ to compensate changes of well known and properly described sources

(N.B. here G(s) contains the process and monitor response function)

space domain

time

domain

Time-Domain: Optimal Controller Design I/II

- Optimal control [or design] ...
 - "... deals with the problem of finding a control law for a given system such that a given optimality criterion is achieved. A control problem includes a cost functional that is a function of state and control variables."
 - Common criteria: closed loop stability, minimum bandwidth, minimisation of action integral, power dissipation, ...
- classic closed loop:

$$T_0(s) = \frac{D(s)G(s)}{1 + D(s)G(s)} \rightarrow 1$$

- Optimal control¹ for the 'small-signal response' yields classic PI-controller
 - Single free parameter $\alpha > T...\infty$ (one per FB loop)
 - facilitates trade-off between speed and robustness
 - adaptive gain-scheduling based on operational scenario (implemented, but not exploited operationally)

IEEE Trans. on Automatic Control, 1976, vol. 21-1, pp. 3-13 & 319-338

Two non-linear effects that need to be addressed by the controller:

- Delays: computation, data transmission, dead-time, etc.
- Rate-Limiter: limited slew rate of corrector circuits (due to voltage limitations)
 - e.g. LHC: ±60A converter: $\Delta I/\Delta t|_{max}$ < 0.5 A/s

- Rate-limiter in a nut-shell:
 - additional time-delay $\Delta \tau$ that depends on the signal/noise amplitude
 - secondary: introduces harmonic distortions

- Closed-loop bandwidth and phase margin depend on the excitation amplitude:
 - + non-linear phase once rate-limiter is in action...

- Not much margin to push bandwidth post-LS1@6.5 TeV
 - Orbit-FB operated close to this limit already in 2012 (N.B. $\Delta \phi$ contribution!)

Functional Description of the LHC Feedback Controller PID Controller & Delays + Rate-Limiter

- In essence, the functional OFC description
 - $G(s) = \frac{e^{-\Lambda s}}{\tau s+1} G_{NL}(s)$
 - T: the power converter time constant and
- → Smith-Predictor and Anti-Windup paths:

$$G^{i}(s) = \frac{\tau s + 1}{1}$$

$$T(s) = F_Q(s) \cdot e^{-\lambda s} G_{NL}(s)$$

LHC Feedback Review – Part2: Orbit- and Q/Q' Specifics, Ralph. Steinhagen@CERN.ch, 2013-05-07

Motivation for Delay and Rate-Limiter Compensation Example: LHC orbit (Q,Q',C⁻, ...) feedback control

Part2: Orbit- and Q/Q' Specifics, Ralph.Steinhagen@CERN.ch, 2013-05-07

LHC Feedback Review

- Ensemble of feedback loops that simultaneous act on the same beam:
 - beam-based feedbacks on: orbit, energy (radial loop), tune, chromaticity, coupling, fast transverse feedback (damper), synchro-loop, ...
 - \rightarrow can/will cause cross talks and even instabilities if not included in design!
- Some choices:
 - Decoupling of the parameter space:
 - Orbit FB (betatron-pertubations) vs. Energy FB (dispersion orbit)
 - Decoupling of operational ranges (either e.g. amplitude or time scales)
 - i.e. Q' tracker being faster than actual Tune-FB loop
 - Introducing a Master-Slave Structure:
 - Energy FB & Q' Tracker sharing the same reference
 - Orbit FB being the slave of the Energy-FB (radial loop)
 - \rightarrow all favour and are more easy to implement in a central controller

Inter-loop Cross-Dependencies II/II

- Multiple FBs and measurements acting on the same RF cavity frequency (N.B. radial position limited by collimator gap)
 - Q' tracker, energy FB (≈'radial loop'), Q" and other optics measurements
 - strategy: orbit feedback acts as a slave system controlling the RF
 - dispersion orbit is subtracted/not corrected by 'regular Orbit-FB'
 - Energy FB corrects w.r.t. to Q' tracker set reference
- Example: Δp/p reconstruction comparison MADX vs. linear model

Common Feedback/Feed-forward Control Layout Control implementation split into two sub-systems:

- Feedback Controller (OFC) performing actual feedback controller logic
 - Simple streaming task (10% of total load)
 - Beam data quality checks and real-time filtering (80% of total load)
 - Server running Real-Time Linux OS with periodic constant load
 - multi-core, highly redundant MTBF > 22 yrs (spec, 120 yrs meas.)
 - Technical Network as robust communication backbone
- Service Unit: Interface to high-level software control and interlock systems 2
 - Proxies user requests, handles asynchronous non-RT tasks

Two main strategies:

- actual delay measurement and dynamic compensation in SP-branch:
 - only feasible for small systems
- Jitter compensation using a periodic external signal:
 - CERN wide synchronisation of events on sub ms scale
 - The total jitter, the sum of all worst case delays, must stay within "budget".
 - feedback loop frequency of 50 Hz feasible for LHC, if required...

beam response

- Single CTR in OFC \rightarrow single point of failure
 - \rightarrow dropped it in 2011 in favour of retrieving timing from multiple BQBBQLHCs
 - \rightarrow direct UDP software link between BST and OFC for 25 Hz trigger

Jitter Compensation Data Concentration Paradigm II/II

- A) 'Synchronous' trigger derived from BST via custom 'TTL \rightarrow UDP/IP' translator
 - Start acquisition with BST derived/distributed start signal
 - accumulate orbit, Q/Q' and FGC data for 10 ms
 - Stop once the accumulation period of 10 ms has passed, drop late data
 - PRO: more robust w.r.t. individual front-end crate errors
 - CON: unforgiving if packets arrive with extra delays \rightarrow equal to 'no data'

B) Auto-triggered based on BPM FE synchronicity

(initially foreseen for commissioning but became operational 'default')

- Start with the first BPM packet arriving at OFC
 - accumulate orbit, Q/Q' and FGC data
- Stop once
 - a) all expected packet are received, or
 - b) a second packet from an already received FE arrived
- PRO: more forgiving if individual front-ends send data late, independent on actual data rate (i.e. can dynamically switch between 1, 10, 25 Hz BPM update rate)
- CON: issues with packets coming in bursts from single front-ends
- Known problem: both schemes work but have issues with either 'RT constraints' or 'constant load conditions' being broken in FESA front-ends

Main streaming taks contained in 'OFBController.cpp', logic flow:

- A) <general initialisation>
- B) Main Loop
 - 1. Data accumulation loop (free-running or locked at 25 Hz):
 - BPMConcentrator nomen est omen
 - CODConcentrator nomen est omen
 - QQPConcentrator, MachineState nomen est omen
 - 2. <validate setting and received data>
 - 3. <update references>
 - 4. EnergyCorrection radial loop feedback, radial modulation, ...
 - 5. OrbitCorrection orbit feedback space domain
 - Wakes up two worker threads performing the two O(n²) multiplication
 - 6. QQPConcentrator tune feedback space and time domain
 - 7. <send COD and Q/Q' corrector data>
 - 8. <publish/stream OFC state via UDP to OFSU>
 - 9. <wait up to 5 ms or for remainder of iteration, service TInterlink requests>
- C) <general de-initialisation/restart>

- Additional independent asynchronuous tasks/threads:
 - Tinterlink RPC class executed only once the main task is finished
 - Light-weight communication layer between OFC and OFSU
 - Blocked except at the end of very main iteration
 - ReferenceOpticsMagic OFC-based optics re-computation
 - Executed (routinely) to account for deselected BPMs, CODs & optics errors
 - High CPU load and risk of stalling the OFC
 - Was added to OFC initially as a "hack"/short-term mitigation on LHC Day-I
 → should be migrated to OFSU or reliable RT level above
- Typical CPU load on cs-ccr-ofc (note difference peak ↔ avg. load):

top - 00:32:56 L	up 261 days, 9:	38, 1 user, load	average: 0.97, 0.78, 0.75	
Tasks: 158 total	., 2 running,	156 sleeping, 0 s	topped, 0 zombie	
Cpu(s): 16.3%us,	1.2%sy, 0.0%	ni, 81.4%id, 0.1‰w	a, 0.1%hi, 1.0%si, 0.0%st	
Mem: 4148320k	total, 3385196	k used, 763124k f	ree, 441636k buffers	
<u>S</u> wap: 5421928k	total, 0	k used, 5421928k f	ree, 884900k cached	
PID USER 9565 root 9566 root 9567 root 9570 root 9571 root 4 root 3287 root	PR NI VIRT R -3 0 1414m 1. -12 0 1414m 1. -12 0 1414m 1. -34 0 1414m 1. -71 -5 0 0 39 19 0 0	ES SHR S %CPU %MEM 4g 41m R 51.5 34.9 4g 41m S 7.0 34.9 4g 41m S 7.0 34.9 4g 41m S 6.3 34.9 4g 41m S 2.0 34.9 4g 41m S 2.0 34.9 4g 41m S 1.7 34.9 0 0 S 0.3 0.0 0 0 S 0.3 0.0	TIME+ COMMAND 19738:06 OFBController 2659:16 OFBController 2347:34 OFBController 572:46.38 OFBController 629:28.38 OFBController 20:50.57 ksoftirqd/0 994:18.85 kipmi0	 Main loop Orbit-FB-H Orbit-FB-V TInterlink CODConcentrator (moved to main loop)

Functional structure, timing diagram & core utilisation (CPU shielding):

main performance limits: RT latencies, CPU/RAM & asynch. tasks

21/33

Specific Orbit Feedback Controller (OFC) Structure IV/IV

Fairly flat C++ Class Hierarchy \leftrightarrow reflects io-streaming task:

OFC ↔ OFSU Communication to the Outside World I/II ROOT IO Messages Usage

Printing to console or (worse) to file is hazardous in an RT environment as it can totally block the process → instead: implemented a circular buffer which re-directs all ROOT, OFC, ... Error, Warning, Info and Debugging messages:

```
2011-12-13 07:05:46 - Error in
<BPMConcentrator::CheckDoubleValue(range)>: value +0.000000e+00 at
index 10 in dabTemp is out of range [+1.000000e+01, +1.000000e+02]
```

 Many OFC, data integrity or FB problems can be traced very quickly this way
 Allows quick trace-back to 'class & member' function, e.g. here: 'BPMConcentrator.cpp::CheckDoubleValue(..)' with the message one finds:

```
[..]
unsigned short ttemperature_short = SWAP_USHORT(data.dabTemp[i]);
Double_t ttemperature = CheckDoubleValue(0.1*ttemperature_short,
0.0,tempStatus, i, "dabTemp", 10.0, 100.0); // [10, 100] degC
[..]
```

short-coming: not often used in CCC and limited internal OFC buffer (~½h)
 → would be nice if this could be logged via OFSU

OFC ↔ OFSU Communication to the Outside World I/II Tinterlink – ROOT I/O streamers and CINT

- TInterlink implements a light-weight RT RPC for OFC↔OFSU streaming data
 maintains list of all commands, input, output parameters and link to local objects
- Specific functions are registered as (compile time consistency check):

- Similar 'get/set + subscribe' paradigm as CMW
- Machine & human readable interface remotely invoked, e.g. via (TCP:8080):
 - list of all available OFC commands: "get commands"
- Total ~ 600 commands → propagates to OFSU setting management code complexity: many simple scalar commands like 'switch OFB on/off', gains, …
- TCP/IP known weakness: 'unresponsive client' can block main loop
 → would like to move this to UDP/IP after LS1

- Latency is measured at every major loop break-point
 - Example latency of the data concentration loop (for short periods):

Helps identifying code sections with weak RT behaviour

 \rightarrow main performance and quality assurance indicator

"Any beam-based feedback loop is only as strong as its weakest link and beam diagnostics it is based upon."

- Fraction of the OFC code base deals with the primary feedback logic (receiving packets → computing corrections → sending new values to FGCs)
- Most OFC code dedicated to non-nominal operation and exception handling
 - Beam measurement quality checks:
 - Detection of erroneous BPMs
 - Q/Q' reconstruction, detection of failures
 - Data and real-time latency integrity checks
 - NaN, Inf, out-of-physical-range (→ checks memory corruption, threading issues, etc.)
 - data packets arriving too early, too frequent, late, or not-at-all
 - settings inconsistency (BPF, ORM-recomputation, ...)

- Three main lines of defense against BPM errors and faults:
 - 1 Pre-checks without beam using the in-build calibration unit
 - eliminates open/closed circuits, dead circuits/element candidates
 - 2 Pre-checks with Pilot and Intermediate beams
 - verifies calibration offset and slope (golden orbit)
 - 3 Continuous data quality monitoring through Orbit Feedback Controller
 - detects spikes, steps and BPMs that are under verge of failing

 \rightarrow this is an area where improvements are possible

http://lhccwg.web.cern.ch/lhccwg/Meetings/2007/2007.10.23/2007-10-23_LHCCWG-FAULTY_BPM.pdf

Beam Measurement Quality Checks Detecting Erroneous BPMs II/II

- Orbit feedback procedure in case of a
 - spike: fail-safe choice of assuming that orbit is at reference position
 - step: pause feedback, average orbit before and after detected step and continue from new averaged orbit (N.B. not tested/commissioning at LHC)

Beam Measurement Quality Checks Q/Q' Signal Quality Checks I/II

- Q/Q' not a direct beam observable \rightarrow highly non-trivial detection and tracking
 - strong dependence on beam intensity, filling pattern, particle species, RF settings, ADT, operational mode, ..., many cross-links/interferences
 - Subject to many reviews, details in DIPAC'11 & CERN-BE-2011-016

- Of note:
 - 1. Strong impact on operation, mitigated by detecting S/N deterioration
 - \rightarrow Tune-FB stops to avoid converting noisy/erroneous meas. into real tune drifts
 - 2. function distributed between BQBBQLHC FESA class and OFC

Beam Measurement Quality Checks Q/Q' Signal Quality Checks II/II

- Motivation to split Q/Q' logic between BQBBQLHC and OFC:
 - high numerical complexity (tune tracker function limited by FE-CPU performance)
 - High-data throughput \rightarrow BQBBQLHC performs necessary data reduction
 - More flexible w.r.t. Q/Q' source and tracker modification/deployment (developments still ongoing and plan to upgrade tracker during LS1)
 - BBQ FE (8 systems) critical to feedback operation beside being Q/Q' source
 - redistributes timing telegram information (BPF, Energy, Modes, ...): enables 'majority voting', thus eliminating single-point-of-failure in OFC
 - Sends data to OFC as well as other "high-performance CCC clients"
 → interoperability between non- and RT communication most critical
- Main issue: MEN-A CPU running at 80% load, blocking further improvements
 - ie. tracking of multiple peaks to disentangle between mains harmonics, $\rm Q_{s},$ interferences etc.

Integrity checks & OFC Changes during LHC Operation I/II

Often "simple" checks to mitigate or fix day-to-day problems, e.g.;

- memory corruption, uninitialised input from systems feeding into the OFC
 → Check every variable against 'NaN', '±Inf', out-of-physically-range (2011)
 (distributed in every module, some performance penalty)
- Energy telegram "noise", '0000'/'FFFF' \rightarrow limited dE/dt + majority voting (2011)
- Switching FBs 'OFF \rightarrow ON' without beam \rightarrow introduced BPF check
- Tune-FB 'OFF \rightarrow ON' without Q signal \rightarrow stability & S/N check
- Noisy Q signal QPS trips \rightarrow stability and dQ/dt rate-limit checks
- BPM temperature comp. (sensor glitch \rightarrow orbit glitch) \rightarrow 'dabTemp' check
 - Q_{rev} outside Q acceptance window \rightarrow stops Tune-FB
- OFSU sending zero-iORM \rightarrow check/reject/reconstruct iORM
- disabled real-time channels \rightarrow disables FBs, Q' tracker, ...
- FB gains set to zero \rightarrow check/reject setting
- Switching FBs 'OFF \rightarrow ON' with fully coupled machine \rightarrow check |C⁻|/switch off

Integrity checks & OFC Changes during LHC Operation I/II

- BST/BOBR timing glitch → check/compare inconsistencies for bunch-Count and errorCount
- Lost one beam during ramp \rightarrow de-coupled/fast re-computation of ORM for single beam operation
- duplicate BBQ/BQS input data \rightarrow detect and reject
- BPM left in intensity/calibration mode \rightarrow reject
- TechNet/front-end IT security scans \rightarrow improved socket and added IP firewall

- Most of the (in 2006) specified OFC design functionality in place
 - Still, a lot of sanity-checks and initially unspecified code added during four years of operation \rightarrow should be preserved for post-LS1 operation
 - A quite educative point of view on that matter (courtesy Quentin): Joel Spolsky, "Things You Should Never Do" (2000) http://www.joelonsoftware.com/articles/fog0000000069.html

[..]

Specific Architecture Summary

- Generally, feedback performed their designed job. Pushing LHC machine parameter envelope also implied increased performance constraints on Feedback operation (notably orbit stability during squeeze)
 - \rightarrow Need to improve FB sub-systems to keep up with LHC progress post-LS1
- Feedback architecture, strategies and algorithms are well established
 - same architecture for orbit, energy, Q/Q' and betatron coupling correction
 - OFC split into two domains
 - space-domain (accelerator physics)
 - time-domain (control theory)
 - nested PID, with internal Smith-Predictor and anti-windup loops
 - cross-talk between multiple simultaneously running feedback loops minimised by central controller design and master-slave topology
 - Any feedback loop is only as strong as the weakest link
 - Quality and integrity of beam parameter measurement
 - Robustness of front-end and controls infrastructure
 - Loop margin of given settings & correct working point (gains, optics, reference)

Appendix

Common Feedback/Feed-forward Control Layout Control implementation split into two sub-systems:

- Feedback Controller (OFC) performing actual feedback controller logic
 - Simple streaming task (10% of total load)
 - Beam data quality checks and real-time filtering (80% of total load)
 - Server running Real-Time Linux OS with periodic constant load
 - multi-core, highly redundant MTBF > 22 yrs (spec, 120 yrs meas.)
 - Technical Network as robust communication backbone
 - Service Unit: Interface to high-level software control and interlock systems
 - Proxies user requests, handles asynchronous non-RT tasks

Part2: Orbit- and Q/Q' Specifics, Ralph.Steinhagen@CERN.ch, 2013-05-07

LHC Feedback Review -

Inter-loop Cross-Dependencies III/III Cascading between individual Feedbacks

Total Number of (FB) Corrector Circuits

- Orbit: 530 correction dipole magnets/plane (71% are of type MCBH/V, ±60A)
 - total 1060 individually powered magnets (60-120 A)
 - ~30 shared between B1 & B2
- Tune:
 - 16x ±600A circuits powered from even IPs (2, 4, 6, 8), 2 families
 - independent for Beam 1&2, but coupling between planes
 - can use them independently, optional use of DS quadrupoles
- Chromaticity:
 - 32x ±600A circuits powered from even IPs,4 families ($\Delta Q' \sim 1 \rightarrow 1A@7TeV$)
- Coupling: four skew quadrupoles per arc, 1/2 families
 - Beam 1: 12x ±600A
 - Beam 2: 10x ±600A
- Total: 1130 of 1720 circuits/power converter → more than half the LHC is controlled by beam based feedback systems!

Total Number of (FB) Corrector Circuits Powering Layout of the SSS Correction Scheme IP4↔IP5

Network Traffic In and Out I/II

typical '/usr/sbin/iftop' diagnostics on cs-ccr-ofc:

	105	100b	1.00Kb	10.0Kb	100Kb	1.00Mb	10.0Mb		100Mb
s-ccr-ofc.cern.ch				<=> cfv-sr3-bpmb2ra.cern.ch			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> 172.18.28.96			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> cfv-sr5-bpmb1lb.cern.ch			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> 172.18.29.13			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> 172.18.25.151			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> 172.18.58.252			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> 172.18.58.253			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> 172.18.50.187			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> 172.18.25.157			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> 172.18.58.254			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> 172.18.29.16			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> cfv-sx4-bpmb1rb.cern.ch			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> cfv-sr6-bpmint2.cern.ch			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> cfv-sr6-bpmb1lb.cern.ch			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> 172.18.58.251			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> cfv-sr6-bpmb1la.cern.ch			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> cfv-sr5-bpmb1la.cern.ch			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> cfv-sx4-bpmblra.cern.ch			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> cfv-sr5-bpmb2lt.cern.ch			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> cfv-sr8-bpmb1rb.cern.ch			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> 172.18.43.99			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> 172.18.43.102			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> cfv-sr5-bpmb1rt.cern.ch			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> cfv-sr6-bpmint1.cern.ch			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> cfv-sr2-bpmb2rb.cern.ch			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> 172.18.60.40			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> 172.18.43.100			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> cfv-sr8-bpmb1la.cern.ch			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> 172.18.60.35			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> 172.18.26.28			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> cfv-srl-bpmblla.cern.ch			220Kb	220Kb	220Kb
s-ccr-ofc.cern.ch				<=> cfv-sr5-bpmb2la.cern.ch			220Kb	220Kb	220Kb
s-ccr-otc.cern.ch				<=> ctv-sr5-bpmb21b.cern.cn			220Kb	220Kb	220Kb
s-ccr-otc.cern.cn				<=> ctv-sri-bpme.cern.cn			220KD	220KD	220KD
s-ccr-otc.cern.cn				<=> 1/2.18.26.2/			220KD	220KD	220KD
s-ccr-otc.cern.cn				<=> 172.18.50.184			220KD	220KD	220KD
s-ccr-otc.cern.cn				<=> 1/2.18.28.92			220KD	220KD	220KD
s-ccr-olc.cern.cn				<=> civ-sr6-ppmb21b.cern.cn			220KD	220KD	220KD
s cor of c corn ch				<pre><=> cfv sr6-bpmb2ta.cern.ch <=> cfv sr6 bpmb1rb corp sb</pre>			220KD	220KD	220KD
s cor of c corn ch				<=> 175 10 60 20			220KD	220KD	220KD
s cor of c corn ch				X=2 172.10.00.55			220KD	220KD	220KD
s cor of c corn ch				X=2 172.10.20.24 Z=X 177 10 70 10			220KD	220KD	220KD
s-cor-ofc cern ch				<-> 172.10.25.15 <-> 172.10.29.99			220Kb	220Kb	219Kb
s cor of corp ch				<-> 172.10.20.00 <-> 170.10.05.150			220Kb	220Kb	219Kb
s-cor-ofc cern ch				<-> 172.10.25.155 <-> 172.19.29.17			220Kb	220Kb	219Kb
s-cor-ofc cern ch				<-> 172.10.20.17 <-> 177.18.50.187			220Kb	220Kb	219Kb
s-cor-ofc cern ch				<=> 172 18 50 185			220Kb	220Kb	219Kb
s-cor-ofc cern ch				<-> 177 18 79 18			220Kb	220Kb	219Kb
s-ccr-ofc.cern.ch				<=> 172.18.60.38			220Kb	220Kb	219Kb
J cer orereennen									21010
X: CLIMM:	57.3MB peak: 6.58Mb						ates: 6.45Mb	6.45Mb	6.46Mb
X:	138MB 15.6Mb						15. <mark>6</mark> Mb	15.6Mb	15.6Mb
OTAL:	195MB 22.2Mb						22.1Mb	22.0Mb	22.0Mb

- very powerful tool, scroll up/down with 'k' and 'j', 'L' toggles logarithmic display, 't' toggles in/out traffic display, 'h' for help and advanced port/DNS display
- Healthy state: all BPMs, FGC Gateways send with the same data rate

Network Traffic In and Out II/II

Healthy OFC-OFSU communication:

18	125B	12.5KB	1.25MB		125MB
0.0.1	=> 10.0.0.2		5.65ME	5.65MB	5.87MB
1 A A 1 1 7 9	<= -> 10 0 0 2		0B 1.07M	0B	0B
·····	<= 10.0.0.2		08	0B	0B
0.0.0.1	=> 10.0.0.2:1656	53	396KE	396KB	411KB
) 0 0 1·1	<= => 10 0 0 2·1		08 396KF	3 396KB	0B 411KB
	<=		08	0B	0B
0.0.0.1	=> 10.0.0.2:1636	58	396KB	396KB	411KB
). 0. 0. 1 : 9090	<= => 10.0.0.7:3691	3	08 638KF	300KB	353KB
	<=		27.5KB	20.3KB	21.5KB
0.0.0.1:3712	=> 10.0.0.2		264KB	264KB	274KB
0.0.1	=======================================	56	08 202KF	0B 202KB	0B 210KB
	<=		08	0B	0B
0.0.0.1:2	=> 10.0.0.2		167KB	167KB	174KB
0.0.1.20	<= -> 10 0 0 2		0B 165/6	0B	0B
7.0.0.1.20	<= 10.0.0.2		08	0B	0B
0.0.0.1:39322	=> 10.0.0.2:1686	50	133KB	133KB	
0.0.1.20000	<=		0B	0B	0B
0.0.0.1:20096	=> 10.0.0.2		132KB 0B	0B	137KB 0B
0.0.0.1:39322	=> 10.0.0.2:1686	59	133KE	111KB	33.7KB
	<=		0B	ΘB	0B
0.0.0.1	=> 10.0.0.2:1684	48	133KB	106KB	62.5KB @B
0.0.0.1:131	=> 10.0.0.2		99. GKE	99.6KB	104KB
	<=				
0.0.0.1:39326	=> 10.0.0.2:1686	50	66.7KB	66.7KB	27.2KB
0.0.0.1:39362	=> 10.0.0.2:1686	50	65.9KB	44.5KB	11.1KB
	<=				
).0.0.1:39320	=> 10.0.0.2:1686	59	66.7KB	43.5KB	10.9KB
0.0.1:65532	=> 10.0.0.7:1684	18	08 66. 7KF	08 8 41.5KB	25.3KB
	<=		08	0B	0B
0.0.0.1:31402	=> 10.0.0.2:1649	98	33.7KB	33.7KB	35.0KB
0.0.1.15161	<= => 10 0 0 2·4931	18	08 33.7KF	0B 3 3 7KB	35 0KB
	<= (10.0.0.1.1.4551		08	0B	0B
0.0.1:39097	=> 10.0.0.2:5050	9	33.7KB	33.7KB	35.0KB
0 0 1 29007	<= -> 10 0 0 2:5051		0B	0B 9 77 77 9	0B
7.0.0.1.39097	-> 10.0.0.2.3031		08	0B	0B
).0.0.1:39097	=> 10.0.0.2:5052	2	33.7KB		
0.0.1.20400	<=	71	0B	0B	0B
0.0.0.1:20488	=> 10.0.0.2:4927	/1	33.7KB 0B	0B	35.0KB 0B
(rates: 12 -2M	13 AMP	13 GMP
(: 1.05MB 33.7KB			27.5KF	20.3KB	21.5KB
TAL: 671MB 14.8MB			13.4M	13.0MB	13.6MB

Alternatively: 'netstat -Natn' and 'netstat -Naun' on cs-ccr-of[c/su] indicate if the network sockets are overloaded (via Recv-Q Send-Q)