

WCM-based Satellite Measurements during the July 2012 vdM scans

Ralph J. Steinhagen, BE-BI

- WCM pickup designs based on established 78' design^{1,2,3}
- Proof-of-principle: "What can be achieved/are the limits re-using the existing infrastructure"
- Simplicity is key necessity to control systematics and reflections below the <10⁻³ level at few-GHz: <u>WCM + "star combiner"</u> \rightarrow 3/8" pig-tail
 - → <u>30 (100) m 7/8" cable</u>
 - \rightarrow 40 dB attenuator \rightarrow 3+ GHz fast sampling scope
 - Intensity etc. measurement relies on beam-based off-/online calibration and signal post-processing

¹T. Linnecar, "The high frequency longitudinal and transverse pick-ups used in the SPS", CERN-SPS/ARF/78-17, 1978 ²Th. Bohl, "The APWL Wideband Wall Current Monitor", CERN-BE-2009-006, 2009 ³R. Cappi et al., "Single-Shot Longitudinal Shape Measurements [..]", CERN-PS-87-31-PSR, PAC 1987, 1987

SPS/LHC Wall Current Monitor Design

Prior to installation

- Combiner: star-topology 8(+8) x 50Ω-matched inputs (outputs)
- Aged/experienced PS-WCM is targeted to be upgraded for reliability and maintainability reasons

Reconstruction Requirements I/II Typical WCM response – Low-Frequency Base-Line

• Naive approach: Fourier Integral definition for ' ω :=0': $F(\omega)$

$$F(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt$$

However: DC information is in-accessible:

- Intrinsic AC-coupling \rightarrow requires base-line restauration
 - typ. 1rd-order zero-pole IIR filter works fine on %-level
 - Particularly important for filling patterns with many bunches (LHC: <2808)
 - observed sub-%-level drifts related bunch-filling pattern, bunch charge,...

Need high pick-up and cable bandwidth to distinguish between large bunches and tiny satellites/ghosts in the vicinity:

LHC Lumi-Calibration WG, Ralph.Steinhagen@CERN.ch, 2012-11-12 reflections, etc. (N.B. difficult to control better than 10^{-3} on > 2 m distances)

 "Re-discovered" expected position dependence while doing a ±5 mm orbit bump around LHC-Pt4 (RF, BI insertion):

Usually suppressed by ±200 um orbit stability during regular operation

Tested/Deployed Oscilloscopes

 Our garden variety: Agilent 54853A (DSO 90000), LeCroy WavePro 7300 A (7Zi), Tektronik & under evaluation: GUZIK's GSA digitizers

- Analog performance very similar between systems/brands:
 - Signal-to-Noise-And-Distortion (SINAD) ratios of typically ~44 dB
 - \rightarrow ~1% accuracy on absolute intensity measurements
 - Noise-floor sufficiently flat/white up to the specified bandwidth
 - \rightarrow can gain in resolution resolution for repetitive signals

Turn-by-turn acquisition using

A) Instantaneous 'raw' data: intensity resolution Δn_{b} limited by 8-bit quantisation, ADC noise (ENOB) and number of samples per bunch n_{s}

$$\sigma(n_b) \sim \frac{1}{\sqrt{n_s} \cdot 2^{ENOB}}$$

- LHC (4 σ_t ~1 ns, 10 GS): ~ 10⁻³ PS (4 σ_t ~5-10 ns, 10 GS): ~ 10⁻⁴
- B) Average over n_{turn} : $\sigma(\overline{n_b}) \sim \frac{1}{\sqrt{n_s} \cdot 2^{ENOB}} \cdot \frac{1}{\sqrt{n_{turn}}}$
 - LHC: <10⁻⁴ (10⁻⁶)@0.1Hz & PS: <2·10⁻⁴ (2·10⁻⁵)@0.1Hz achieved (theo.)
 - n_{turn} essentially only limited by
 - required measurement bandwidth/time-scale the parameter changes
 - acquisition HW limitations, e.g. LHC: tested oscilloscopes average in SW: 0.1 Hz bandwidth ↔ 112k turns max needed to be limit the to 500 turns/10s (data transfer limit) → upgrade in place/being evaluated
- C) Dynamic range splitting: resolution is basically the same as raw turn-by-turn acquisitions but shifting range for satellite/ghosts into favourable ADC range
 - First results are quite promising... see later slides

From a pure resolution point of view: "Can detect Ghosts by Eye"

- Detection needs to be done in the presence of
 - Sub-% level reflection caused be unavoidable geometric imperfections
 - variable systematic background caused by temperature effects of dielectrics and ferrites in cable/pick-up
- Going below 10⁻³-level requires additional measures. The most promising combination found:
 - I. Sub-percent level compensation of the pick-up response
 - Classical Fourier-/Wiener-filter based Deconvolution
 - II. High-frequency Noise Rejection
 - Savitzky-Golay χ²-fitting¹
 - III. Base-line restoration
 - SNIP background estimate^{2,3}

¹A. Savitzky and M. Golay, "Smoothing and Differentiation of Data by Simplified Least Squeares Procedures", Analytical Chemistry, Vol. 36, No. 8, July 1964, pp. 1627–1639
 ²C.G. RYAN et al., "SNIP, A Statistics-Sensitive Background Treatment for the quantitative Analysis of PIXE Spectra in Geoscience Applications, NIM B34 (1988), 396-402
 ³M. Morháč, J. Kliman, V. Matoušek, M. Veselský, I. Turzo: "Background elimination methods for multidimensional gamma-ray spectra". NIM, A401 (1997) 113-132.

 Real-life installation will deviate from what has been measured in the lab before installation → requires re-calibration with beam, principle:

I. Linear Response Compensation II/II – Life-Beam Data

II. High-Frequency Noise Rejection – Average vs. X²-Fit based Method (Simulation, Zoom)

II. High-Frequency Noise Rejection – Example SPS

 Example: single bunch in the SPS at flat-top before extraction (black trace: reference based on 100 turn average)

Savitsky-Golay algorithm is de-facto a dynamic low-pass filter (within limits)

Real bunches do not necessarily obey 'Gaussian' shapes

What's derived from the WCM data up to now:

- number & intensities of bunches & satellites (per 400 MHz bucket)
- true Cos²- , Parabolic- & Gaussian bunch length χ^2 -fits
- Frequency containing 50/95/99% of bunch power/intensities, peak voltages
- Bunch profiles, power spectra (\rightarrow machine impedances), ...
- Main aim of WCM is to provide an independent tool with different systematic to cross-checks with other more precise instruments (e.g. DC- and Fast-BCTs, Schottky)

2012-07-19 09:00 VdM Scan – Raw WCM Data B1 II/III Zoom around raw base-line

Relative amplitude (intensity) resolution of ~10⁻⁴ (10⁻⁵) visible

2012-07-19 09:00 VdM Scan

Timeseries Chart between 2012-07-19 03:00:00.000 and 2012-07-19 13:00:00.000 (UTC_TIME)

- WCM calibrated using regular physics fill against DC-BCT
 - Calibration factor consistent over several weeks
 - Re-tuned mostly only when changing cabling compensation, etc.

Timeseries Chart between 2012-07-19 03:00:00.000 and 2012-07-19 13:00:00.000 (UTC_TIME)

- WCM calibration consistent during injection & ramp
- Some deviation (overestimate?) once going into collisions.
- Beam Intensity' depends only on first bucket out of 10 buckets per 25 ns slot (→ lower bias)

- Detect the same bunches... good.
- Individual bunch intensities agree within ~ 0.25 ± 0.25%
 - WCM exception: first slot is being 'split in two' \rightarrow SW bug to be fixed

- EastBCT 📕 WCM 📒 (FastBCT-WCM) [%]
- WCM operates at 400 MHz → would a priori expect smaller/no bunch-bybunch dependence for 50 (25 ns) bunch spacing compared to Fast-BCT (how to test this?

norm. intensit

 Reflections after main bunch could be a priori be masked but few-% level reflections more indicative of a HW problem → access last Friday

2012-11-09 modifications of WCM (APWL) B1

- Removed star-combiner

 (since not a matched 50Ω system)
 → will increase the sensitivity to position
 but should be acceptable (N.B. Orbit-FB)
- loaded 7 out of 8 ports at source, matched to ~ -30 dB
 → needs to be redone during next TS/LS1
- Noticed a 7/8 cable termination that was a bit loose

 \rightarrow need to check redo this during the next TS

Further plans: shift/split 40 dB attenuation to WCM (will add some backmatching to the otherwise reflective pick-up)

Gain by post-compensating the reflections but limited overall to factor ~10
 → should be fixed in HW

Alternative: Ghost and Satellite Detection in the PS Should we follow this up also for the LHC?

New PS WCM – Proposed System Layout (>LS1)

III. Base-Line Restoration – SNIP Algorithm Example PS WCM Signal

Satellites have been deliberately produced for better proof-of-principle:

III. Base-Line Restoration – SNIP Algorithm Example PS WCM Signal - ZOOM

What could be achieved – PS II/III

Forcing satellites and saturating the scope input (fast recovery time)

Satellites 'visible' and results look promising but requires post treatment to compensate for reflections, pick-ups response, droop etc.

After full post-processing chain of smoothing and removing background:

Satellites visible in "clean" condition, prel. noise-floor estimate ~10⁻⁵ w.r.t max

Summary

- Nom. empty LHC RF buckets may be filled with minute amounts of particles \rightarrow aka. 'Satellites' and 'Ghosts' up to 10⁻⁶ smaller than nominal bunches
- Proof-of-principle: "Can these be detected already in the injectors before the arrive in the LHC using standard wall-current-monitors?"
 Test confirmed that the existing system...
 - can achieve 10⁻⁵ resolutions @3 GHz over a few turns or single-shot via:
 a)turn-by-turn averaging over a couple of hundred turns
 - b) splitting signal and saturating its copy to specifically detect satellites
 - Requires beam-based baseline compensation since the system drifts on the up to 10⁻³-level due to temperature, saturation and other effects
- Present performance limited by:
 - Reduced duty cycle of 10k vs. 100k@0.1Hz
 - Cable/pick-up reflections during first 10 ns after main bunch
 - \rightarrow However, can estimate satellites via WCM to DC-BCT differences
- Acquisition HW upgrade being in progress (LS-1):
 - Improve to 100% duty cycle for the averaging, quality of cabling
 - compensation algorithm being done in FPGA
 - Dual-range 'full vs. 1% saturated' setup (electronics in preparation)

Thank you for your Attention!

W12

H

Supporting Slides

...are unavoidable impedance mismatches

Reflections: RF Connector and Cable Geometry I/II

- Selection of common connectors and adapters (H&S):
 - Naively, one would expect these to be inert
 - static and frequency dependent component
 - For comparison, a VSWR of
 - 1.02 ↔ r = 1% ↔ 40 dB
 - 1.03 \leftrightarrow r = 1.4% \leftrightarrow 36.6 dB
 - 1.05 \leftrightarrow r = 2.4% \leftrightarrow 32.3 dB
 - RF transitions are unavoidable in real life
 - %-level reflections are common/normal

VSWR ≤ 1.03 + 0.01 · f [GHz] ≤ 1.19 + 0.06 · f [GHz]

VSWR ≤ 1.03 + 0.004 f [GHz]

VSWR ≤ 1.025 + 0.007 ·f [GHz] ≤ 1.05 + 0.015 ·f [GHz]

VSWR ≤ 1.06 + ~0.01 · f [GHz]

 $VSWR \le 1.02 + 0.03 \cdot f [GHz]$

≤ 1.05 @ 6GHz

Anatomy of a SMA connector:

... however: imperfections can be compensated using the measured cable transmission transfer function for the specific installation (relaxes a bit if $\lambda >>I$)

Reflections: RF Connector and Cable Geometry Real-Life Example

Permittivity depends on frequency and temperature

- Highly non-trivial and active research topic
- N.B. PE melts at a very low temperature around 100 °C ↔ ~20 W/m power loss in cables (thanks to S. Smith for pointing this out!)

LHC-type Beam Production in the CERN-PS here: 50 ns beam

- Depending on the particle population per bucket:
 - Nominal bunch: $n_{h} \sim 10^{9} 1.6 \cdot 10^{11}$ p/bucket
 - 'Satellite': %-level filled buckets typ. in vicinity of nominal bunches
 - mostly PS beam production, particle transfer
 - <10⁻⁴ w.r.t. nom. bunch filled bucket – 'Ghost':
 - capture losses/recapture beam at LHC injection

ALICE Interaction Point reconstruction:

Synch-Light Single Photon Counting (APD)¹:

¹A. Jeff et al., "First results of the LHC longitudinal density monitor", NIMA, Vol. 659, Issue 1, 2011, pp. 549–556

LHC Lumi-Calibration WG, Ralph. Steinhagen@CERN.ch, 2012-11