

Fast Inter/Intra-Bunch Activities related to CLIC and LHC

– Update on Electro-Optical BPM Activities –

Ralph J. Steinhagen

Beam Instrumentation Group, CERN

Motivation I/II – HeadTail Oscillations

- Transverse instabilities come in various flavours, e.g.:
 - Lower-order modes: Inter-bunch resolving bunch-by-bunch motion \rightarrow BPMs
 - Intra-bunch instabilities \rightarrow Head-Tail¹ instabilities High-order modes:

b) m = 1, $\chi = 6.9$ radians d) m = 2, $\chi = 6.9$ radians

Studied intensively in the CERN-Booster²:

- PS: 120 ns bunch length \leftrightarrow less demanding in terms of bandwidth
- SPS/LHC: bunch length down to 1 ns \rightarrow requires multi-GHz analog bandwidth
- 1 M. Sands, "The Head-Tail Effect: An Instability Mechanism in Storage Rings", SLAC-TN-69-008, 1969 2 J. Gareyte, "Head-Tail Type Instabilities in the PS and Booster", CERN, 1974

a) mode m = 0, $\chi = 0$

Need crossing angle θ to avoid additional parasitic collisions in the IR
 → reduces bunch overlap → reduces luminosity:

$$L = L_0 \cdot F_{crossing} \cdot \dots = L_0 \cdot \frac{1}{\sqrt{1 + \frac{\sigma_s}{\sigma_{x,y}}} \tan(\theta/2)}} \cdot \dots$$

Without crab-cavity:
• Aim with crab cavity: $F_{crossing} \approx 1$
$$\frac{\text{crab-cavity}}{(1 + \frac{\sigma_s}{\sigma_{x,y}})} \cdot \frac{(1 + \frac{\sigma_s}{\sigma_{x,y}})}{(1 + \frac{\sigma_s}{\sigma_{x,y}})} \cdot \frac{(1 + \frac{$$

• Direct measurement of crab-cavity kick angle θ and phase error $\Delta \phi \rightarrow$ orbit difference Δx between head and tail of the bunch

- Present standard implementation: long strip-line,
 Σ-Δ hybrid & high bandwidth to resolve bunch structure
 Main limitations:
 - Resolution: sampling limited to 8/~6.3 ENOB
 - \rightarrow limits resolution to the 100 um range
 - \rightarrow Beam typ. lost before visible with HT
 - Power issues, linearity over wide bandwidth, …
 limit: ~ 3-5 GHz BW & < 40 dB dynamic range

Limits of Classical Head-Tail Monitoring Approach For Comparison: SPS/LHC HT System Response I/II

3.5 GHz due to scope bandwidth, hybrid common-mode bleed-through Slightly better performance for LHC HT but not much

Limits of Classical Head-Tail Monitoring Approach For Comparison: SPS/LHC HT System Response II/II

Similar strip-line design with response up to 3 (5) GHz bandwidth...

... differences likely due to RF feed-through dielectric material/geometry

Tackle three domains independently:

- A) Pick-up improve bandwidth, linearity, power-issues, EMC susceptibility:
 - 1. Synchrotron-Light based BPM \rightarrow dual use CTF3 & LHC
 - Collaboration effort with ACAS (Uni-Melbourne and ASLS)
 - 2. (In-)direct EO-based BPM \rightarrow machine/beam type independent
 - Plan to design/integrate prototype monitor to be installed in SPS during LS-1
 - 3. Wider-band, electro-magnetic pick-up \rightarrow ???

B) Analog front-end:

- Time-Domain: new DC-6 GHz Σ-Δ hybrid (Marki-Microwave component based but limited power capabilities)
- 2. Frequency-Domain: new Multi-Band RF Schottky Detector (ACAS)

C) Digital-Data-Acquisition – large PM-type history buffer, online pre-processing

- 1. GUZIK DAQ: 64GB, 20 GS/s, 4.5 13 GHz BW, ext. FPGA firmware
- 2. Bunch-by-bunch DAQ (needed for B.2) \leftrightarrow related to b-b-b BBQ activities

Electro-Optical BPM

Refraction in birefringent crystals depends on ex. electrical field:

• Typically the *'half-wavelength voltage* V_{π} ' is used to describe electro-optical modulators, i.e. the voltage required to achieve destructive interference:

$$\Delta \varphi := \pi \quad \Rightarrow \quad V_{\pi} = \frac{\lambda}{r_{33}n_e^3 - r_{13}n_o^2} \cdot \frac{d}{L}$$

- wavelength λ , crystal height d and length L are basically free parameter
- Large variety of crystals (KTP, GaAs, ...), we chose:
 - Lithium Niobiate (LiNbO₃) 5x5x15 mm³
 - common and the 'standard' in telecommunication
 - typ. (only) low V_{π} ~6-10 V available
 - Lithium Tantalate (LiTaO₃) 3x3x15 mm³
 - more robust but similar to LiNbO3 or Al₂O₃

	Lithium Niobate	Lithium Tantalate
	LiNbO ₃	LiTaO ₃
Density:	4.65 g/cm ³	7.46 g/cm ³
Melting point:	1257 °C	1650 °C
Thermal expan. [10 ⁻⁶ K ⁻¹]	15, 5	16, 4
Thermal cond. [W/mK ⁻¹]	5.6	4.6
Damage threshold	250 MW/cm ²	500 MW/cm ²
ε _r @ 100kHz	ε _⊥ 85, ε _∥ 29	ε _⊥ 54, ε _∥ 43
transmission range [nm]	350-5500	400 - 5500
refractive index (@589 nm, 25°C & @633 nm, 25°C)	n _o 2.30, n _e 2.21	n _o 2.19, n _e 2.18
EO-coefficient* [pm/V]	$r_{13} = 9.6, r_{33} = 30.9,$ $r_{22} = 6.8, r_{51} = 32.6$	$r_{13} = 8.4, r_{33} = 30.5,$ $r_{22}=20$
Non-linear EO coeff. [p/m/V] @ 1064 nm	d ₃₁ = -4.5, d ₃₃ = -0.27, d ₂₂ = 2.1	d ₂₂ = 2.0, d ₃₁ = - 1, d ₃₃ = -21

J.B.
*for LiNbO₃ and LiTaO₃: r12 = -r22 = r61,
$$\Delta\left(\frac{1}{n^2}\right) = \sum_{j=1}^3 r_{ij}E_j$$
 $n = \sqrt{\epsilon \mu}$
r13 = r23, r33, r42 = r51

	Zinc-Telluride	Gallium-Phosphide
	ZnTe	GaP (110)
Density:	6.34 g/cm ³	4.14 g/cm ³
Melting point:	1238 °C	1477 °C
Thermal expan. [10 ⁻⁶ K ⁻¹]		
Thermal cond. [W/mK ⁻¹]		
Damage threshold		
ε _r @ 100kHz	ϵ_{\perp} XX, ϵ_{\parallel} XX	
transmission range [nm]	650-22k	400 - 5500
refractive index (@10.6 um, 25°C & @633 nm, 25°C)	n _o 2.30	n _o X.XX
EO-coefficient* [pm/V]	r ₄₁ = 4.25	r ₄₁ = 1.0
Non-linear EO coeff. [p/m/V] @ 1064 nm	d ₃₁ = -4.5, d ₃₃ = -0.27, d ₂₂ = 2.1	d ₂₂ = 2.0, d ₃₁ = - 1, d ₃₃ = -21

Refractive Index Dependence on Wavelength

• LiNbO₃ – gain control possible but limited to factor ~ 10

... thus acquired 530 nm (green) and 1550 um (infra-red) laser for testing this.

Robustness w.r.t. Radiation Damage

- LiNbO₃ and LiTaO₃ are related to Al_2O_3 , known to be fairly radiation hard
- Nevertheless, should get more precise numbers to assess long-term damage
 - Radiation damage level on LiTaO₃ according to [1,2]:

Conversion factor tbc. but '10¹⁷ Ar⁺⁺' is probably much more than 100 kGy

 C. J. Wetteland et al., "Radiation Damage Effects in [..] LiTaO3 Single Crystals", Mat. Res. Soc. Symp. Proc. Vol. 504, 1998
 R. H. West, S. Dowling, "Effects in [..LiTaO3..] Exposed to Radiation from a Flash X-Ray Source", Royal Military College of Science, IEEE TRANSACTIONS ON NUCLEAR SCIENCE vold. 41, #3, 1994

- Two stage demonstration:
 - Re-use existing MSM-PD-based light-to-electrical conversion scheme as being used by Synchrotron-Light BPM (collaboration with ACAS)
 - Sensitivity: 1% beam movement \leftrightarrow 3V signal, resolve a fraction of this
 - Michelson interferometer with EO-crystal as trans. Modulator
 - EO-crystal as amplitude modulator per pick-up
 - \rightarrow insensitive/lose laser phase information
 - \rightarrow turns out to be more robust...
 - Bandwidth: commercial LiNbO3 20 GHz EO-Modulator
 - S/N ratio, reflections (limited by coupler)
 - 2012-2013: Design of purely-optical BPM pick-up (2013+?)

Test & Evaluation Programme Sensitivity Setup – Phase Modulation-based

Mach-Zehnder or Michelson Topology

- Utilises wave-front phase interference to suppress common mode signal
- However:
 - Need to maintain polarisation within (larger) structure
 - More delicate/less robust w.r.t. alignment, stability of mirrors and split ratio
 - would need to be done locally close to the pick-up for re-tuning (remote motorisation, local instrumentation, ...yikes)
- Structure size limited by coherence length ↔ laser line-width
 - manageable on lab-scale but challenging w.r.t. in-tunnel operation

LiNbO₃ Sensitivity Setup – Phase Modulation-based I/II here: < 1mW, 630 nm Laser

Sensitive PD

Polarisation Cube

Using a classic Michelson-

interferometer topology

DC/low-frequency voltage supply

- E.g. polarisation (\rightarrow pockels cell) or phase retardation (Fabry-Perot) +U $\mathsf{U}_{_{\text{bias}1}}$ In the tunnel ... EO crystal 1 ectric/mechani few m to km of RF out single-mode fiber S p-beam σ õ EO crystal 2 Ρ l_{bias2} e.g. ±10∨ Simple \rightarrow robust design: somewhere else next to DAQ
 - no setup or retuning of electrical/mechanical parts in tunnel
 - complexity kept at DAQ
 - Leverage same MSM-detector design as for synch-light based BPM
 - Phase and amplitude matching possible via $\rm U_{_{0}}$ and $\rm U_{_{bias}}$
 - Less radiation issues, could consider cryo-cooling MSM detectors
 - Could daisy-chain/mix multiple pick-ups on the same two optical fibres

LiTaO₃ Sensitivity Setup – Result I/II V₂ Measurements

In agreement with crystal parameter and geometry

- Drifts in time traced back to temperature changes and laser power stability
 - Mitigated since position measurement is differential, furthermore these effects can be reduced through stabilisation of the of the laser power and setup temperature (relative differences between crystals)

Not unexpected:

thermal crystal dilation/contraction \rightarrow changes optical path-length

- Valuable lessons learned:
 - A) amplitude-mod. much more robust than interferometric approach
 - less (no) laser wavelength/phase-coherence issues
 - \rightarrow less constraints on required laser bandwidth $\Delta\lambda$
 - → works even with incoherent light (however: laser easier for fibres-coupling)
 - B) 'all-fibre-based' setup easier to handle and more stable than tested 'in-air' setup using mirrors, prisms, film polarisers, etc.
 - integrate as much (all 21) into fibres and RPM body
 - \rightarrow integrate as much (all!?!) into fibres and BPM body.
 - C) MSM-PD quite robust, low-noise, wide-band and eventually easier to be efficiently coupled to fibres than anticipated (thanks to Sophie)
 - \rightarrow light detection/conversion to electrical signal is not an issue
 - D) Laser worked (and was safe to use) but should spend more than 7\$ \rightarrow better laser power stability
 - E) Main environmental effects:
 - Stray ambient light (~5 uW) interference with signal (~ mW)
 → eliminated through using fibres
 - Temperature induced optical, particularly crystal path length changes → path between polariser→crystal→analyser needs to be stabilised
 - Not been tested (yet): impact of radiation (should be minimal) & vacuum

Amplitude Modulation-based Scheme Proposed Optical-BPM Design for SPS Prototype

- All-Optical-BPM layout scheme, re-use conceptually LHC BPM design:
 - Keep the same body, keep external button form-factor

- Impact of EO-crystal (dielectric setup) on machine impedance small but should be re-checked by FE-EM simulation
- Mechanical design & construction in 2012/13
 - Need to investigate crystal clamping and fiber-to-feed-through alignment
 - Possible prototype installation in LS1?

- **CERN Standard Fibres:**
 - DRAKA, C03e single-mode SM fibre
 - DRAKA, MaxCap-BB-OM2 gradient index multi-mode fiber, 50 um core
 - attenuation < 2.6 dB/km (@850 nm), modal bandwidth > 0.5 GHz*km
- Application would benefit from higher-quality fibre:
 - DRAKA, MaxCap-BB-OM4 gradient index multi-mode fiber, 50 um core
 - attenuation < 3.0 dB/km (@850 nm), modal bandwidth > 4.7 Ghz*km
- Layout (N.B. fibre lengths are fairly short):

2011

en@CERN.ch.

Optical-BPM Summary, Ralph.Steinhag

LSS4 – Layout

Need to Digitise Signal: Optical-to-Electrical Conversion Metal-Semiconductor-Metal (MSM) Photodetector I/II

- Hamamatsu's G4176-03 (TO5 package, SMA connector)
 - $t_r \approx 30 \text{ ps} \leftrightarrow \text{nom. 50\% atten.}$ @12GHz
 - 0.3 pF for active area of 0.2 x 0.2 mm²
 - typ. light input power ~5-10 mW (50% duty-cycle)
 - dark-current: 100 pA @23°C
 - max. est. S/N: ~150 dB (w/o cooling)

(very good value for money, prototyping!)

N.B. alternative variant for infra-red: G7096-03

Metal-Semiconductor-Metal (MSM) Photodetector II/II

... not quite a P(i)N junction (diode)!
 no polarity, requires bias-voltage (typ. 10 V)

- Speed determined by doping of (In)GaAs SC material and PD geometry (reflection, C, ...)
 - Not quite a MS Schottky Diode
- Variants available exceeding 100 GHz bw. but makes fiber-coupling mandatory
- \rightarrow KISS: initial prototyping with in-air design

Opto-Electrical Delta-Sum Hybrid Scheme

Balanced-Detection Common-Mode Detection: +10V +10V $\Sigma \sim \mathbf{I}_1 + \mathbf{I}_2$ similar/identical -10V +10V detectors

Advantages:

- even lower noise than pure MSM
- Simple phase compensation
- Simple adaptive orbit offset comp.
- 50Ω vs. high-impedance (glued to ADC)
- Can keeps sensitive (== expensive) equipment/control outside the tunnel

Advantages:

- incoherent sum → indep. on phase of laser wave-front (no expensive PANDA fibres!)
- Can be re-used for other EO-options
 → see second part of summary
- Future: dependence on beam size \rightarrow extend scheme to measure σ

Opto-Electrical Delta-Sum Hybrid Scheme

- First RF prototype tested at the ASLS (Synchrotron-Light BPM)
 - good S/N and noise rejection but produced on poor off-the-shelf FR4 $(\epsilon(f)=4.2\pm0.4, \tan(\delta)=0.01) \rightarrow \text{limits bandwidth to } < 2 \text{ GHz}$

- Next batch will be re-done with proper RF substrate, ordered for testing:

 - Rogers RO3003:

Rogers RT/Duroid 5880: $\epsilon = 2.20 \pm 0.02$, tan(δ)=0.0009, const ϵ ! ε=3.00±0.04, tan(δ)=0.0013, const ε!

- Specific advantage of MSM photodetector vs. diodes: no specific bias polarity \rightarrow can be exploited to dynamically flip signal between delta and sum mode
- Can detect DC changes
- Bias voltage and polarity can be used to:
 - high-frequency difference controlled via regulated DC voltage
 - simple calibration for phase difference:
 - One PD bias voltage is set to zero measure signal with the other and vice versa and adjust for the phase difference (externally e.g. mechanically stressing optical fiber)

-

Additional slides

Sensitivity & Gain Adjustment

Main observable:

$$\Delta I \simeq I_0 \cdot \frac{\Delta x}{R}$$

- Some constraints:
 - EO-crystal range (saturation-like):
 - \rightarrow adjust crystal length/width to maximum bunch intensity/length
 - MSM-PD saturation (~10 mW \leftrightarrow 150 mV on 50Ω): $\Delta I|_{max} < I_{max}(MSM)$
 - \rightarrow limits maximum laser power for bunch peak signal
- However, these limits do not apply at the same time
 → can use laser power to adjust dynamic range, e.g.
 - low laser power ↔ high-intensity bunches and vice-versa
 - Bal. detector \rightarrow little impact of optical amplification on noise performance

 $V_{pickup}|_{max} < 0.8 \cdot V_{\pi}(crystal)$

Test-setup:

- Aim: confirm bandwidth and achievable S/N ratio
- Basically this is a standard telecommunication setup (modulo fiber length)
 - Reproduce bandwidth
 - Explore limits of link, noise sources etc.

- DSO: > 1 mW \rightarrow operation in dedicated lab and armoured fiber mandatory
 - Don't have one on the Prevessin site ...

LiNbO3 Bandwidth Setup Behold: BI-QP's New Laser-Lab

 Requirement from our DSO: light-tight confinement, only tool-based access allowed, laser cut if lid is opened

Courtesy Philippe Lavanchy; awaits DSO approval

- Creating an optical hybrid translates to the same classical RF hybrid issues
- EO-modulator basically are (un-)matched micro-/strip-line structure
- Critical aspects:
 - Impedance matching
 - Geometry \rightarrow tricky but similar to our other RF pick-ups
 - Larger dielectric loss-tangent due to $\epsilon_r(t) \sim 80$ (BPMs strip-lines are in vacuum)
 - Insulation
 - hasn't been demonstrated (yet) that we can achieve -40dB or better

Alternatives... Electrical → Optical BPM Signal conversion II/II

- Directly connect em-BPM \rightarrow eo-modulator \rightarrow fiber \rightarrow MSM detector
- Compared to BPMs, Eo-mod. typ. have badly matched strip-lines

- Not a design criteria for telecommunication (digital signals)
- Reflections may possibly perturb measurements of consecutive bunches
- If not done properly probe laser noise (typically 1%) may propagate and superimpose onto the beam signal
 - \rightarrow balanced detector scheme may mitigate this to some extend.

Independent of the electro-optical detection scheme:

- Sensitivity and signal levels are given by crystal geometry which can be adjusted to the expected maximum/minimum bunch intensity, however:
 - A priori static sensitivity, i.e. easy no optical gain switching
 - with added complexity: add more than one crystal per pick-up

 - gain adjustment would need to be addressed on the analog front-end
 - Radiation damage effects of fibers vs. cables need to be further assessed