

Tune System Performance with/without Gating

Ralph J. Steinhagen¹, M. Gasior¹, S. Jackson¹, Thomas G. Lucas^{1,2,3}

¹Beam Instrumentation Group, CERN; ²ACAS, Australian Collaboration for Accelerator Science; ³School of Physics, The University of Melbourne;

- Total 9 front-ends involved in Q/Q' diagnostics (6 used by OP), functionally equivalent but grouped into two subsets:
 - Continuous FFT Systems: fixed acquisition settings, used by logging, postmortem and feedback systems
 - On-Demand FFT Systems: free-to-play, MD-type studies, Q/Q' via using the tune kicker, etc...
 - Development Systems: used by BI to validate new designs, SW & settings
 - Quick-access in TuneViewer for OP devices, others in sub-menus:
 - N.B. GUI does not need to be active for the systems to send data to the tune feedback.

ے 🛃	CERN Accelerator Selector Dialog			\odot \otimes
	Please Choose Q/Q' Measurement System:			
	Continuous Gated B1	On-Demand B1	Continuous Gated B2	On-Demand B2
	Continuous HS B1		Continuous HS B2	
	LHC – Trans. Schottky B2 (BQS.B2)			
	^I by−pass CMW proxy			
OK Development				

- Two new devices: copy/same AFE as as the On-Demand system (FFT1)
 - Continuous $HS^* \rightarrow$ to be used with pilot, ion beams and few (<400) nominal bunches
 - Continuous Gated \rightarrow nominal beam & when gating is required

*Not being logged yet (tbd. this week with Chris)

Total 9 front-ends involved in Q/Q' diagnostics (6 used by OP)

r 🗹 🖂 📅 BI-QP Fixed-Display ▼ RBA: Ihcop OFSU BQBBQ,UA47.FFT2_B1 BQBBQ,UA47.FFT2_B2 BQBBQ,UA47.FFT3_B1 BQBBQ,UA43.FFT3_B2 BQBBQ,UA47.FFT1_B1 BQBBQ,UA43.FFT1_B2 **INJPROB** 450.12 [GeV] BI-QP Fixed Display Fill-Number: 2012-10-13 15:08:24 3168 Energy: System: Beam1 Beam2 ON 1024 turns@12.5 Hz ON 1024 turns@12.5 Hz Continuous Gated FFT System: ON 1024 turns@12.5 Hz 0N 1024 turns@12.5 Hz Continuous High-Sensitivity FFT System: OFF 8192 turns@2.5 Hz ON. **On-Demand FFT System:** RT-Trims RT-Trims

- Basic principle: AC-coupled peak detector¹
 - intrinsically down samples spectra: ... $GHz \rightarrow kHz$ (independent on filling pattern)
 - thus 'Base-Band-Tune Meter' (aka. BBQ)
 - Base-band operation: very high sensitivity/resolution ADC available
 - Measured resolution estimate: < 10 nm $\rightarrow \epsilon$ blow-up is a non-issue
 - AC-coupling removes common-mode \rightarrow only rel. changes play a role
 - capacitance keeps the "memory" of the to be rejected signal
 - no saturation, self-triggered, no gain changes to accommodate single vs. multiple bunches or low vs. high intensity beam
- However: no specific bunch-by-bunch information (unless using gating)

¹M. Gasior, "The principle and first results of betatron tune measurement by direct diode detection", CERN-LHC-Project-Report-853, 2005⁴

BBQ Working Principle

... being essentially an 'RF Schottky (Peak) Detector'

Which 'peak' is selected depends on a number of parameters

$$\Delta I_{button}(t) \sim \underbrace{\rho(\tau, t)}_{\tau \sim \sin(\omega_{s}t)} * \begin{bmatrix} I_{cm} \\ I_{0} \end{bmatrix} + \underbrace{\frac{\Delta z}{R} \underbrace{\sin(\omega_{Q}t + \varphi)}_{dep. onQ', \Delta p/p, \omega_{s}, ...}}_{\text{Betatron motion}} + h.o.$$

Typ. LHC Ramp with Longitudinal Blow-Up

New Head-Tail Monitor Multi-Band RF Schottky Diode Peak Detector

Front-End Prototype

Without gating:

- More robust/less inter-system dependencies
- One system can cover a wide range of beam intensities (10⁹ → 10¹⁴ protons) with one setting
- trigger/measure any bunch that becomes potentially unstable
- more sensitive to bunch length oscillations
- Mixes signal of different bunches that oscillate with same frequency but typically difference phase

With gating

- Decouples ADT-gains from Q/Q' diagnostic signal requirements
- trigger/measure one specific bunch, no mixing → cleaner spectra
- Allows gain or beam-beam effect studies on selected bunches during physics
- Reduced duty-cycle/signal levels for the RF diode detector
- Less signal if selected bunches are stable
- Another free parameter: gating must be properly set-up (sequence, SW, ...), otherwise: no signal

2012-10-05 - Fill 3133

ADT BBQ Q comparison, Ralph. Steinhagen@CERN.ch, 2012-08-25

2012-10-05 – Fill 3133: Injection

Abort gap and injection cleaning visible on first six bunches

2012-10-05 – Fill 3133: Prepare Ramp

10 dB damper gain reduction for the first six bunches

2012-10-05 – Fill 3133: Ramp Start & Chirp

Inherent cross-talk w.r.t. 'chirping' and using with a high-gain ADT

 → often measure rather the feedback loop response rather than the tune
 → before 'chirping' on should reduce the gain, an OP parameter?

2012-10-05 – Fill 3133: Start of Ramp

 Q_s side-bands around f_{rev} visibly reduced:

> 30 dB S/N ratio in some cases (particularly during start of the ramp)

2012-10-05 – Fill 3133: End of Ramp

• Q_s around main Q-peak more pronounced \rightarrow enables rough Q' estimate

Further Exploitation – Chromaticity via Q Side-bands II/II

LHC start-ramp:

LHC flat-top:

Instabilities detected by BBQ at $\beta^*=60$ cm I/II

Timeseries Chart between 2012-09-28 07:31:38.476 and 2012-09-28 08:00:54.264 (LOCAL_TIME) HUMELOGL7.B1E10_TCP.A6L7.B1:LOSS_RS06 ---- LHC.BCTFR.A6R4.B1:BEAM_INTENSITY ---- LHC.BCTFR.A6R4.B1:BEAM_LIFETIME_LOBW --- LHC.BQBBQ.CONTINUOUS.B1:EIGEN_AMPL_2 Intensity **BBQ** amplitude losses on TCP 28-Sep-2012 07:36 28-Sep-2012 07:40 28-Sep-2012 07:48 28-Sep-2012 07:52 28-Sep-2012 08:00 28-Sep-2012 07:32 28-Sep-2012 07:56 28-Sep-2012 07:44 LOCAL TIME X: 28-Sep-2012 07:36:35.000 Y: 3.1958E-4 Data Set: Data Set: CURSOR X: 28-Sep-2012 07:36:35.552 Y: 0.25514630670769234

Signal not seen on first six bunches

• Q-amplitue-to- f_{rev} ratio larger at 800 MHz than <400 MHz \rightarrow intra-bunch motion

Summary

- Preliminary results confirm the viability of a gated BBQ measurement:
 - more narrow peak and suppression of Q_s harmonics around DC
 - side-bands are much more pronounced around main Q peak
 - scale with and permits rough check on Q'
 - May need to update the Q tracker for large Q'
- First six bunches more stable than the rest of the beam and perturbed by the abort gap and injection cleaning (i.e. BBQ does not trigger on un-captured beam)
- Observed instability once reaching β*=60 cm, identified to be related to intrabunch beam motion of a few selected bunches. To be followed-up...
 - Based on this data, could we adjust the following two things:
 - ramp without chirping (at least for B1, the signals are very much sufficient without and the chirp perturbs the first bunches unnecessarily)
 - keep the gain modulation throughout flat-top, squeeze, adjust and possibly also during the physics beam process? (only first six bunches of B1)
- Need a short access to UA47 to modify/decouple the BBQ gating signal
 After that, could time-in the two system independently/deploy sys. for OP
 - Provided there is an ~2h access, could deploy a gated BBQ system for B2

- Some comments on Q', modulation index and tune width of the BTF
 - Turn-by-turn oscillations can be approximated by (n: turn)

$$\Delta z(n) = z_0 \cdot \sin\left(2\pi \cdot \left[Q_0 \cdot n + \frac{Q'}{\omega_s} \frac{\Delta p}{p} \cdot \sin(\omega_s n)\right] + \phi_\beta\right)$$

$$\cos\left(\omega_c t + B\sin(\omega_m t)\right) = \sum_{n=-\infty}^{+\infty} J_n(B) \cdot \cos\left((\omega_c + n\omega_m)t\right)$$

$$S_n(Q') = J_n\left(\frac{Q'}{\omega_s}\frac{\Delta p}{p}\right)$$

Tune/Qs side-band amplitude (J_n: Bessel f.): linear over a wide range of Q'

- ...parallel spectrum analyser via multi-channel direct down-conversion scheme (N.B. need a better system name)
- Example: if the there is more power in 'CH $n \ge 1' \rightarrow$ head-tail instability