

BE-BI Options for Satellite/Ghost Measurements

Ralph J. Steinhagen

Special thanks to Th. Bohl, S. Bart-Pedersen and H. Damerau

Resumé:

- Detection of ~1%-level Satellites:
 - existing pick-up hardware (WCM) fulfills most requirements
 - Visually' easy to detect but ... fully automated 'turn-key' system requires system response compensation, further control room level integration
 - experience with LHC BI-WCM could be applied to PS/SPS
 - Detection of sub-percent level Satellites ('ghosts') or un-bunched beam:
 - may require/install new high-bandwidth pick-ups
 - can re-use existing acquisition, post-processing and CCC integration

Wall Current Monitor as used by BI

- LHC/SPS WCM pickup based on established 78' design^{1,2}
- Simplicity is key necessity to control systematics and reflections on the 10⁻³ level at GHz frequencies: <u>WCM + "combiner"</u> → 3/8" → <u>30 (100) m 7/8" cable</u> → 40 dB attenuator → 3 GHz fast sampling scope

(N.B. Implies control of every single transition/bend/connector on mm-level)

Idea was not to re-build the turn-based BQM system:

 a) Tackling average signal over N-turns
 → overcomes scope quantisation/noise
 b) full compensation of measured system response
 → necessary to get (any hope of) %-accuracy

¹T. Linnecar, "The high frequency longitudinal and transverse pick-ups used in the SPS", CERN-SPS/ARF/78-17, 1978 ²Th. Bohl, "The APWL Wideband Wall Current Monitor", CERN-BE-2009-999, 2009

Real bunches do not necessarily obey 'Gaussian' shapes

- What's being computed so far:
 - number & intensities of bunches & satellites (per 400 MHz bucket above thres.)
 - true Cos²- , Parabolic- & Gaussian bunch length χ^2 -fits
 - Frequency containing 50/95/99% of bunch power/intensities, peak voltages, ...
- Most difference/details are only visible at very high frequencies > 1 GHz
- Response of pick-up, cables, scope at these frequency need compensation!

Comparison of Bunch Length Estimates

- LHC.BOFSU:OFC_ENERGY
- LHC.BWCM.B1:BUNCH_LENGTH_COS2_MEDIAN

- --- LHC.BQM.B1:BUNCH_LENGTH_MEAN
- --- LHC.BWCM.B1:BUNCH_LENGTH_CUSTOM_MEDIAN

- ... there is no obvious bunch length \rightarrow shape changes are important
 - difference between FWHM (BQM) and x²-fit Gaussian length estimate

Comparison of Bunch Power Estimates

Estimates give an indication of shape and required device bandwidths

Comparison of Bunch Intensity Estimates

--- LHC.BCTDC.A6R4.B1:BEAM_INTENSITY

--- LHC.BCTFR.A6R4.B1:BEAM_INTENSITY ---- LHC.BOFSU:OFC_ENERGY

6

- LHC.BWCM.B1:BEAM_INTENSITY

--- LHC.BWCM.B1:SATELLITE_INTENSITY

- WCM cross-calibrated to DC-BCT using a single nominal bunch (satellite free)
 - Typically percent-level beam outside nominal bucket
 - Being addressed: local 400 MHz phase stability \rightarrow affects 1st satellite after main bunch

- Assume main limit is given by noise of the oscilloscope 8-bit (Flash-)ADC
- Noise is sufficiently random/white
 - \rightarrow synchronise and integrate signal over given number of turns
 - Demonstrated and implemented for LHC \rightarrow resolution 10⁻³@0.1 Hz
 - Main limit: numeric performance and data transfer limits (DAQ→scope→PC)
 - \rightarrow second (or newer generation) oscilloscope would alleviate this (~ 35 kCHF)
 - Tested at the PS for 50 turns (== maximum duration with stable beams)
 - Split signals and saturate one copy to zoom-in on satellites
 - possible due fast-recovery time of oscilloscope's input pre-amplifier
 - saturated channel can be normalised w.r.t. full range copy
 - limit: non-linearity and stability of the Flash-ADC on the sub-10⁻³ level
 - most scopes can deal with this but DAQs need some home-brewn Dev.
 - big advantage: get reasonable results within few turns!!
 - However: read-out speed limit this probably to 1-2 measurements/cycle
 - \rightarrow may need more than one scope/DAQ and fair amount of memory
 - N.B. for faster nominal bunch-by-bunch shape measurements we have the BPCLs.

Steinhagen@CERN.ch, 2011-11-07

Ralpl

BI-TB on Ghost/Satellite detection,

• LHC setup: WCM \rightarrow short (30 m) 7/8" cable \rightarrow 3 GHz Scope \rightarrow post-processing...

Beam 2

Beam 2 – first nominal bunch

WCM tails, reflections & droop \rightarrow can be compensated (see later slides)

What could be achieved – PS I/II – Preliminary

Initial test comparing single turn acquisition (no 200 turn avg. yet ... being analysed)

Dominated by WCM systematic, known tails & reflections \rightarrow upgrade planned

What could be achieved – PS II/II – Preliminary

Forcing satellites and saturating the scope input (fast recovery time)

Satellites 'visible' and results look promising but requires post treatment to compensate for reflections, pick-ups response, droop etc.

- True longitudinal bunch profile measurement is distorted by:
 - a) WCM pick-up response \rightarrow design values + measurements by T. Bohl & U. Wehrle
 - b) combiner-response (star-topology) \rightarrow only design (re-measure end '10)
 - c) Dispersion due to 7/8" Heliax cabling & analogue scope bandwidth

Historical: (very) high numerical complexity if treating raw 20 (100) us frames

Fundamental limits of the WCM-based Scheme: 'Satellite' \rightarrow 'Ghost' Detection Potential

Imited by total system bandwidth for below percent-level detection:

... limited by unavoidable systematic due to transmission line transitions, reflections, etc. (N.B. difficult to control better than 10^{-3} on > 2 m distances)

Linear Response Compensation – Simulated Data

Linear Response Compensation – Life-Beam Data

Summary

- Detecting satellite/ghost bunches can be achieved with existing PS/SPS/LHC pick-ups infrastructures
- High resolution/bandwidth relative measurements easily possible via:
 - a) Fast-Frame average over a couple of hundred turns
 - b) Splitting signal and saturating its copy to specifically detect satellites
 - possible since Oscilloscope input pre-amplifier recovers within a few ns
 - \rightarrow For the LHC we would need a new 2nd scope, PS \rightarrow DAQ/Scope
- A <u>robust</u> absolute accuracy of better than 10⁻³ remains probably a domain better tackled by the FastBCT/DC-BCT, main limitations:
 - Flash-ADC linearity, pick-up position sensitivity, cable drifts,
 - ... could a priori be compensated but system drifts continuously on < 10⁻³ level
 - Need a better "proto-response template" (\rightarrow BI-MD in '12!)
 - Have been in contact/surveilled potential oscilloscope and DAQ suppliers
 - total of 44 out of which 12 (3) qualify w.r.t. the PS (LHC) requirements
 - cost estimate: 20-35 kCHF per system (depending on final requirements)
 - Question: do and which options do we want to exploit for PS and LHC?
 - Hardware resources and integration (mostly BI-SW)? Users? Duplication/Synergies with RF & OP groups? Who drives the interest/use case? BI? OP?

Supporting Slides

Let me know if some company is missing

Company	Company URL	Max. BW [GHz]	¢op⊧	DAQ?	Last checked	Comment
Acquitek	http://www.acquitek.com/	0.2		Х	last checked: 2011-10-20	7GHz Transient Digitizer & iMSO-104 (5 MHz)
AEMC Instruments	http://www.aemc.com/	0.2	Х		last checked: 2011-10-20	hand-held
Aqilent Technologies	http://www.agilent.com/	33	Х	Х	2011-10-20	one of the usual suspects
Analog Devices	http://www.analog.com	0.5		Х	2011-10-20	evaluation board
ATTEN	http://www.attenelectronics	0.2	Х		2011-10-20	Agilent derivative?
BK Precision	http://www.bkprecision.com	0.1	Х		2011-10-20	
BST	http://www.bstcaltek.com/	0.02	Х		2011-10-20	Hand-held
CERN	http://wikis.cern.ch/display	0.05		Х	last checked: 2011-10-20	VME card
CHAUVIN ARNOUX	http://www.chauvin-arnoux.	0.2	Х		last checked: 2011-10-20	
EXFO	http://www.exfo.com/	0	Х		last checked: 2011-10-20	500 GHz bandwidth sampling scope
Extech	http://www.extech.com/	0.06			last checked: 2011-10-20	hand-held
Fluke	http://www.fluke.com/	0.2	Х		2011-10-20	
Gage	http://www.gage-applied.c+	1.5		Х	last checked: 2011-10-20	
GW Instek	http://www.gwinstek.com/	0.35		Х	last checked: 2011-10-20	
Hamamatsu Photonics	http://www.hamamatsu.com	0	Х		last checked: 2011-10-20	70 GHz bandwidth sampling scope
lwatsu	http://www.iti.iwatsu.co.jp	0.5	Х		2011-10-20	
Keithlev	http://www.keithley.com/	0.00125	Х		last checked: 2011-10-20	comment: PC card
Lab Kits	http://www.lab-kits.com/	0.2	Х		2011-10-20	
Lecrov	http://www.lecroy.com/	45	Х		2011-10-20	one of the usual suspects
Link Instruments	http://www.linkinstruments.	0.2		Х	last checked: 2011-10-20	USB
Meilhaus Electronc GmbH	http://www.meilhaus.de/	0.001		Х	2011-10-20	comment» PC cards
MEN Mikro Elektronik	http://www.menmicro.com/	0.01		Х	last checked: 2011-10-20	
Metrix	http://www.metrix.com/	0.15	Х	Х	last checked: 2011-10-20	
National Instruments	http://www.ni.com	5		Х	last checked: 2011-10-20	512 MB/ch
National Semiconductor	http://www.national.com	3.6		Х	2011-10-20	evaluation board, 12 bit!!
OWON Technology	http://www.owon.co.uk/	0.2	Х		last checked: 2011-10-20	
Pico Technology	http://www.picotech.com/	0.5		Х	2011-10-20	USB. 12 GHz sampling scope (7 kEUR)
PROMAX ELECTRONICA	http://www.promax.es/	0.2	Х		2011-10-20	
Rigolna	http://www.rigolna.com/	1	Х		last checked: 2011-10-20	Agilent derivative?
Rohde Schwarz	http://www.hameg.com/ &	2	Х		last checked: 2011-10-20	one of the usual suspects
Seeed Studio	http://www.seeedstudio.co	0.144	Х		last checked: 2011-10-20	hand-held (custom)
Signatec	http://www.signatec.com/	2		Х	last checked: 2011-10-20	comment: PC card
SP Devices	http://spdevices.com/	2		Х	last checked: 2011-10-20	cooperative
Tecpel	http://www.tecpel.com/	0.15	Х		2011-10-20	
Tektronix	http:// www.tek.com	33	Х		last checked: 2011-10-20	one of the usual susper scopes only
Texas Instrument	http://www.ti.com	0.08		Х	last checked: 2011-10-20	evaluation board
TiePie engineering	http://www.tiepie.com/	0.2		Х	2011-10-20	(USB)
TPI Test Products Internation	▶ http://www.testproductsintl	0.02	Х		2011-10-20	hand-held
UNI-T	http://www.uni-trend.com/	0.2		Х	last checked: 2011-10-20	
Unisource Corporation	http://www.unisourceworld+	0.1	Х		last checked: 2011-10-20	
Velleman	http://www.velleman.eu/	0.03		Х	last checked: 2011-10-20	box (parallel port)
Wuntronic GmbH	http://www.wuntronic.com/	1.5		Х	2011-10-20	
Yokogawa	http://www.yokogawa.com	1.5	Х	Х	2011-10-20	
					1	

- Split signal into manageable bandwidths and treat them separately and recombine them in the end
 - Attenuate/amplify bands with expected strong/weak power contributions
 - Post-processing (de-convolution) probably mandatory (difficult to passively match each part)

Example: satellites 50 (PS?) and 2.5 ns (LHC) prior to bunch train

2.5 ns satellites after bunch visible but dominated by WCM tails/reflections...

"Mother" design for LHC APWL, would expect similar performance

