Beam Instrumentation for Particle Accelerators

Ralph J. Steinhagen Beam Instrumentation Group, CERN It all looks so easy...

- Beam Instrumentation provides the "eyes and ears" of the operators:
 - accelerator only as good as the instrumentation measuring its performance
 - without operators become "blindfolded F1 driver travelling at 300 km/h!"

- Two goals
 - Machine Performance "to keep the beam in the pipe"
 - assess and maintain tight beam tolerances required for the particle collisions that are detected and analysed by the HEP experiments
 - Machine Protection detect dangerous situations that require a safe beam extraction
 - protect multi-billion LHC investment for fundamental research

Example: 10th September 2008 Milestones of 50 Hours of LHC Beam Commissioning

Beam Orbit Stability and Tides ...

∆x≈200 µm

LHC's magnets may "quench" (loose superconducting state)

 E_{MQE} < 10 mJ/cm⁻³ vs. E_{stored} = 350 MJ/beam

- \rightarrow sufficient to quench all magnets and/or may cause serious damage
- Multitude of mechanism that may cause an accidental release of this energy
 - · Require detailed analysis and
 - design of robust control measures
- Example of uncontrolled vs. controlled release in an accelerator

The only device withstanding an impact of a nominal LHC Beam: ... in a deep, quiet and dark corner... the LHC Beam Dumps and Screens

- Electro-magnetic pick-ups (antennas) operating at ~100 MHz up to 12 GHz
 - Massively distributed system (27 km circumference)
 - Non-interceptive, um-level resolution

- Many BI exploited by feedbacks cont. re-adjusting the accelerator
- Orbit-Feedback is the largest and most complex of these:
 - 1088 BPMs \rightarrow 2176+ readings@25 Hz (68 front-ends)
 - 1060++ correction magnets (~50 front-ends)
 - \rightarrow Total >3500 devices involved
 - \rightarrow more than half the LHC is controlled by beam based feedbacks!

Orbit feedback used routinely and mandatory for nominal beam

72 µm

- Function:
 - Detect and protect the LHC from damage
 - Dump the beam to avoid magnet quenches
 - \rightarrow triggers fast safe beam extraction within less than a turn
- Design criteria: signal speed and reliability, >10⁹ dynamic range (via current to frequency conversion)
- Massively distributed system:
 - \sim ~3600 Ionisation Chambers (1.5I N₂ gas filled at 1.1 bar, 1 kV)
 - ~300 Secondary Emission Monitors

Loss [Gy/s]

Beam

World famous Example of structural Resonances Tacoma Narrows Bridge 1940

Tuning the LHC – a Diagnostics

Particle beam life-time defined by structural accelerator resonances:

"Hadron beams are like elephants – treat them bad and they'll never forgive you!"

 Absence of natural damping provides quite some challenge: how to measure resonance without driving/loosing the beam due to an instability !?!?

... exploited by feedbacks that continuously "re-tune" the accelerators

"Accelerators are only as good as the beam instrumentation and diagnostics methods that measure it!"

- What does work in beam instrumentation entail?
 - Design, construction & operation of instruments
 - R&D to find novel or improve existing techniques to fulfil new requirements
 - Encompasses a wide range of disciplines:
 ... engineering, ... physics, data analysis and a lot of curiosity
 - A fascinating field of work!