

Advancements in the Base-Band-Tune and Chromaticity Instrumentation and Diagnostics Systems during LHC's First Year of Operation M. Gasior, R. J. Steinhagen, S. Jackson, (CERN, Geneva, Switzerland)

### Abstract

The Base-Band-Tune (BBQ) system is an integral part of day-to-day LHC operation, driving tune and chromaticity diagnostics and feedbacks. This contribution summarises the system's overall performance and documents the various improvements of the analogue front-end circuitry, digital post-processing and integration that were necessary in response to issues arising during high-intensity physics operation since its first introduction in 2005.

# **1** Direct-Diode-Detection BBQ



### 2 The Good...



### The Long-Term BBQ/FB Performance



### Basic principle: AC-coupled peak detector

- no saturation, self-triggered, no gain changes
- intrinsically down samples spectra:
- ...a few  $GHz \rightarrow 1kHz \dots f_{rev}$
- Base-band: very high sensitivity/resolution ADC available
- Measured resolution estimate: < 30 nm</li>
- $\rightarrow \epsilon$  blow-up is a non-issue

### -Noteworthy second-order effects:

- For small number of bunches:  $Peak \rightarrow Average Q$  detector
- finite charge-up time of storage capacitor due to
- bunch-length  $\tau \ll$  revolution period  $T_{rev}$
- From the charge balance equation (first order):



(n: number of bunches, r: approx. diode series resistance, R: discharge resistance) For large number of bunches:





# Initial design assumption: no residual tune signatures on the beam (0 dB S/N)

 $\rightarrow$  Anticipated constant driving of the beam and – to limit the required excitation levels – the highly-sensitive BBQ system was developed.

### Blessing/Curse after start-up:

1)BBQ turn-by-turn resolution of better than 30 nm more sensitive than other LHC systems (ADT: 1μm, BPM: 50 μm)
2)Ever-present Q oscillations up to μm level

# Luxurious 30-40 dB S/N ratios enabled the passive monitoring, tracking and feedbacks without any additional excitation,

However, µm-level oscillations are incoherent "noise" from a Tune-PLL point of view

Need to excite ~30 dB above this "noise" to recover the same

### Out of 191 ramps in 2010:

- ... 155 ramps with > 99% transmission, 178 ramps with > 97% transmission
- ... only 12 ramps lost with beam (6 with Tune-FB during initial commission.)
- .. "if without FBs": 83 crossings of 3<sup>rd</sup>, 4<sup>th</sup> or C<sup>-</sup> resonance, 157 exceeded |ΔQ|>0.01

### Impressive performance for a first year of operation

### Source of Tune-Oscillations...





9 0.3 0.31 0.32 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 frequency [frev] frequency [f

BBQ is sensitive to GHz-range head-tail motion!

## **3** The Bad...





performance as with a "passive-only" FFT system
 → 10...100 µm oscillations vs. collimators <200 µm</li>
 Driving the beam with the present ample signals seemed to be inefficient/less robust

### **Remedy** $\rightarrow$ **Refined Q-Tracker Algorithm**

Idea: Q resonances are wider than mains harmonic and Q<sub>s</sub> interference lines: 1) calculate of the *n*-turn based raw-spectra S<sub>raw</sub>(f), 2) compute (averaged) magnitude spectra  $|S_{raw}(f)|$ , 3) apply  $n_{median}$ -wide median-filter  $\rightarrow |S_{median}(f)|$ , 4) apply  $\pm n_{LP}$ -wide average-filter  $\rightarrow |S_{LP}(f)|$ , 5) find highest peak Q<sub>est</sub> in  $|S_{LP}(f)|$  with  $f_{min} \leq Q_{est} \leq f_{max}$ , 6) re-search highest peak Q<sub>raw</sub> in  $|S_{raw}(f)|$  around the previous estimate 'Q<sub>est</sub>  $\cdot n/2 \pm n_{median}/2'$ , 7) re-fine binning-limited Q<sub>raw</sub> estimate by fitting the tune resonance to a Gaussian distribution [5]:



8) derive the coupling and unperturbed tunes [6]:

...remains unknown but is rather a burst-like instabilities than due to coherent perturbation.

### **4** The U...ndetectable



"Forest" of Q<sub>s</sub> lines due to longitudinal bunch phase and shape oscillations (machine development)





Higher transverse bunch-by-bunch FB (ADT) gain implies also more measurement noise propagated onto beam  $\rightarrow$  nullifies the higher BBQ sensitivity The LHC is not yet limited by instabilities, and the ADT is thus operated with reduced gains whenever precise Q/Q' diagnostics or Tune-FB are required.

### **Conclusion**

The BBQ system facilitated a fast and reliable commissioning and operation of the LHC from day one. Ever-present um-level tune oscillations in the LHC provide tune signal-tonoise ratios of 30 dB above the BBQ's nm-level noise floor preluded a change of paradigm of relying on passive monitoring of beam oscillations only and required modifications to the LHC Q and Q' diagnostic algorithm. In response, a multi-stage fitter algorithm has been implemented, efficiently suppressing non-tune related interferences lines by rejecting those lines with bandwidths smaller than the expected minimum tune resonance bandwidth. Beam observations helped with a better understanding of second order effects such as the BBQ measuring the average tune for a low number and becoming increasingly sensitive to intra-bunch head-tail oscillations for a larger number of bunches circulating in the machine.