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2011-03-30 NA Particle Accelerator Conference (PAC'11)
– Instrumentation, Controls and Feedback

Real-Time Beam Control at the LHC

Ralph J. Steinhagen, 
CERN, Beam Instrumentation Group

On behalf and special thanks to: LHC commissioning team, 
M. Andersen, A. Boccardi, E. Calvo, R. Denz, M. Gasior, 

L. Jensen, S. Jackson, R. Jones, Q. King, M. Lamont, 
S. Page, J. Wenninger, and operations crew.
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Outline
  

Requirements: 'What was specified' vs. 'What was/is needed'
Underlying Feedback Architecture

 

Performance and Stability during LHC's First Year of Operation
Gretchenfrage: “Could or should LHC run without Feedbacks”

 

Required Changes with respect to Initial Design

mailto:Ralph.Steinhagen@CERN.ch
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Beam Parameter Stability in Hadron Machines

Traditional requirements on beam stability...

... to keep the beam in the pipe!

Increased stored intensity and energy:

– up to 75 MJ@3.5 TeV in the beam (2011) 
→ can quench all magnets/cause serious damage!

Requirements  depend on: 

1. Capability to control particle losses
• Machine protection (MP) & Collimation
• Quench prevention

2. Commissioning and operational efficiency

Beam 3 σ envel.
 ~ 1.8 mm @ 7 TeV

 50.0 mm 

Beam screen

36 mm

LHC:

mailto:Ralph.Steinhagen@CERN.ch
mailto:MJ@3.5
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Change of Paradigm at the LHC ...

FBs became a requirement for safe and reliable nominal LHC operation

– implications on controller reliability, availability and system integration

The main driving constraints:

– ensuring collimator hierarchy ↔  minimising local bumps

• Δx ≤ 25-50 μm at collimators ↔ constraints max. allowed oscillations

– Decay- and snap-back of dipole's multipole components

– Operating close to third order resonances

– Keep beam excitation to a minimum: transverse emittance preservation

mailto:Ralph.Steinhagen@CERN.ch
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Orbit Tune Chroma. Energy Coupling
[units] [c_]

Exp. Perturbations ('06): ~ 0.5 0.014 ~ 70 ± 1.5e-4 ~0.01
± 0.15 ±0.001 2 ± 1 ± 1e-4

Achieved Stability ('10): ~ 0.1  ~ 0.001 ± 2 (7) ~1e-5 < 0.003

[σ] [0.5∙frev] [Δp/p]

Nom. Requirements: « 0.01

Expected Dynamic Perturbations vs. Requirements
– or: Design Assumption vs. Operational Reality

Initial assumptions and plans (2006-2009):
– Chromaticity considered as most critical parameter

– FB Priority list: Chromaticity → Coupling/Tune → Orbit → Energy

What turned out to be needed operationally from 2009 → now:

– Tune → Tune → …→ Orbit & Energy/Radial-Loop … → Q'(t) →…→ C-

• impressive Q'(t), C- and beta-beat stability and reproducibility

From Decay/Snap-back expected dynamic perturbations

mailto:Ralph.Steinhagen@CERN.ch
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LHC Feedback Success has a long Pedigree: 
Years of Collaboration, Development and leveraged Experience

1996

1999

2000

2001

2002

Wide-Band-Time-Normaliser 
proposed for LHC BPM system

Radiation testing showed digital 
acq. needs to be out of tunnel

RT control specification, mostly decay-/snap-
back and nominal performance (no MP yet)

BPM design and capabilities "inspired" specs.
Moving digital processing out of the tunnel

Orbit-FB prototype tests at the SPS

Recognition that collimation will 
rely on real-time Orbit-FBs

IWBS'04: SLS, ALS, Diamond, Soleil and 
others → affirmed Orbit-FB strategy

Orbit(-FB) and MP entanglement recognised
→ FB: "nice to have" to "necessary"

2009 – the year we established collisions: Q/Q'- & Orbit FBs operational

2003

2004

2005

2006

BNL & CERN collaboration on Q/Q'(-FB)
initially BNL's 200MHz resonant BPM

Tune-FB included in original US-LARP 
TWC-based Schottky monitor proposed

Direct-Diode-Detection → Base-Band-Tune 
(BBQ), prototyped at RHIC/SPS,   
robust Q-meas. & unprecedented sensitivity
1.7 GHz Schottky prototype at SPS 

FFT-based Q tracking op. deployed at SPS 
PLL-studies at RHIC
FNAL-LARP involvement in Schottky design 
and front-end electronics

Q & Coupling-FB demonstrated at RHIC
PLL-Q and Q'(t) tracker demononstrated at SPS
FNAL-design/CERN-built 4.8GHz TWC Schottky
Tune Feedback Final Design Review (BNL)

Joint CARE workshop on Q/Q' diagnostics 
(BNL, FNAL, Desy, PSI, GSI, …)        
→ affirmed Q/Q' strategy

2007

mailto:Ralph.Steinhagen@CERN.ch
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LHC: Beam-Based Feedback Systems

Specific requirements fairly distributed → opted for central global feedback system

One central controller (OFC + hot spare):

higher numerical load

higher network load (↔ 170 front-ends)

dependence of machine operation on single device

easier synchronisation between front-ends and FBs

flexible correction scheme changes and gain-scheduling

efficient to handle cross-talk and coupling between FBs

Orbit-Feedback is the largest and most complex LHC feedback:
– 1088 BPMs →  2176+ readings @ 25 Hz from 68 front-end computers
– 530 correction dipole magnets/plane, distributed over ~50 front-end computers

Total >3500 devices involved ↔ more than half the LHC is controlled by FBs!

OFC

Beam FE/
corr. circuits

LHC

Ethernet

mailto:Ralph.Steinhagen@CERN.ch
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PC-GatewaysPC-GatewaysPC-Gateways
Monitor-FrontendMonitor-Frontend

Common Feedback/Feed-forward Control Layout
Control implementation split into two sub-systems:

...

FB/FF Controller

CMW

Monitor-Frontend

Ethernet 
UDP/IP

beam response

Service Unit

Database settings,
operation,other user

Surface
Tunnel

...
beam instrument

Ethernet 
UDP/IP

corrector magnets

m x n x

Feedback Controller (OFC) performing actual feedback controller logic

– Simple streaming task (10% of total load)

– Beam data quality checks and real-time filtering (80% of total load)

– Server running Real-Time Linux OS with periodic constant load

• multi-core, highly redundant – MTBF > 22 yrs (spec, 120 yrs meas.)

– Technical Network as robust communication backbone

Service Unit:  Interface to high-level software control and interlock systems

– Proxies user requests, handles asynchronous non-RT tasks

mailto:Ralph.Steinhagen@CERN.ch
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To avoid inherent Cross-Talk between FBs...
… Cascading between individual Feedbacks

Main strategy: derive meas from FB control variable

– Q'-tracker using 'Q
raw

 = Q
meas

 – Q
trim

'

– Sub. Δp/p-mod. from Radial-Loop &  Orbit-FB reference

mailto:Ralph.Steinhagen@CERN.ch
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Standard Singular-Value-Decomposition based Orbit Correction

Initially: Truncated-SVD (set λ
i
-1:= 0, for i>N)

– not without issues: removed λ
i
 allowed local bumps creeping in (e.g. collimation)

Regularised-SVD (Tikhonov/opt. Wiener filter with λ
i
-1:= λ

i
/(λ

i
2 + μ), μ>0)

– more robust w.r.t. optics errors and mitigation of BPM noise/errors 
→ allowed re-using same ORM for injection, ramp and 10+ squeeze steps

mailto:Ralph.Steinhagen@CERN.ch
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Orbit Feedback Performance

Orbit feedback used routinely and mandatory for nominal beam

Typical stability:  80 (20) μm rms. globally (arcs)

Most perturbations due to Orbit-FB reference changes around experiments

mailto:Ralph.Steinhagen@CERN.ch
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Orbit Stability during one LHC Fill

Orbit stability during physics < 5 μm over 15 hours (Orbit-FB 'off')
– new high-accuracy diode-based beam position monitor system: Δx

res
 < 0.5 μm 

Reference changes at ramp start
and start of squeeze

mailto:Ralph.Steinhagen@CERN.ch


R
ea

l-
T

im
e 

B
ea

m
 C

on
tr

o
l a

t t
he

 L
H

C
, R

al
ph

.S
te

in
ha

ge
n@

C
E

R
N

.c
h

, N
ew

 Y
or

k,
 N

Y
, 2

0
11

-0
3-

30

13

Earth Tides dominating Orbit Stability during Physics: 

Known effect from LEP → changes the machine circumference/energy

– Testimony to LHC alignment and beam stability!

Predicted tidal force

Feedback signal Beam 1
Feedback signal Beam 2

~ one week

Δ
x≈

20
0 

μ
m

mailto:Ralph.Steinhagen@CERN.ch
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LHC Q/Q' Diagnostics and Residual Noise I/II

Initial design assumption: no residual tune signatures on the beam (0 dB S/N)
– Anticipated constant driving of the beam and – to limit the required 

excitation levels – the highly-sensitive BBQ system was developed

Blessing/Curse after start-up: 

1 BBQ turn-by-turn res. < 30 nm

• 30+dB more sensitivity than          
other LHC systems             
(e.g. ADT: 1μm, BPM: 50 μm)

2 Ever-present Q oscillations
on the few 100 nm to μm level

Luxurious 30-40 dB S/N ratios enabled the passive monitoring, tracking and 
feedbacks without any additional excitation

mailto:Ralph.Steinhagen@CERN.ch
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LHC Q/Q' Diagnostics and Residual Noise II/II

However: μm-level oscillations are incoherent 
“noise” from a Tune-PLL point of view

Need to excite ~30 dB above this “noise” to 
recover “passive” FFT performance 
→ 10...100 μm oscillations vs. collimators <200 μm

Driving the beam with the present ample signals 
seemed to be inefficient/less robust

PLL tracking in action:

Q'v = 15 (dp/p =10-4 @2.5 Hz)   Q'-trim  → → re-measured Q'v = 10

beam magnitude response 

beam phase response 

mailto:Ralph.Steinhagen@CERN.ch
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Typical Q/Q'(t) Control Room View
2010 Statistics: Out of 191 Ramps...

… 155 ramps with > 99% transmission, 178 ramps with > 97% transmission

… only 12 ramps lost with beam (6 with Tune-FB during initial 3.5 TeV comm.)

… “if without FBs”: 83 crossings of 3rd, 4th or C- resonance, 157 exceeded |ΔQ|>0.01

Impressive performance for the first year of operation and low-ish intensities:

Beam 1

Beam 2

Q(t)

Q'(t) energy

mailto:Ralph.Steinhagen@CERN.ch
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Feed-Forward Back-Bone:  LHC Software Architecture (LSA)
– Magnetic Field Corrections to the “bare” LHC

Model-based FF reduced expected 'Q'(t) swing' from 250 to less than 30 units
– Low intensity beam survived these initial ramps 

→ testimony to machine linearity and small machine impedance

Courtesy Bottura & Sammut

Field measurements & Model

Today's circuit-by-circuit compensation:

Courtesy M. Lamont & M. Strzelczyk

mailto:Ralph.Steinhagen@CERN.ch


R
ea

l-
T

im
e 

B
ea

m
 C

on
tr

o
l a

t t
he

 L
H

C
, R

al
ph

.S
te

in
ha

ge
n@

C
E

R
N

.c
h

, N
ew

 Y
or

k,
 N

Y
, 2

0
11

-0
3-

30

18

Residual overall Chromaticity Stability
Feed-forward of Q'(t)-Feedback signal for next fill turned out to be sufficient!

–  enforced by strict pre-cycling following physics, access or circuits 'off '...

mailto:Ralph.Steinhagen@CERN.ch
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A Note on Dependence of LHC Operation on Feedbacks:

Could/should LHC run without Feedbacks: – NO

1 More than 50% of fills would have probably been lost without FBs
• mostly during or after of changing the mode-of-operation

2 Even with perfect feed-forward, FBs provide a robustness to operation by 
mitigating “unforseen” or feed-down effects

However:
“Having a car brake or ESP/ABS system does not justify reckless driving!”

Feedbacks may and do shadow systematic machine problems 
→ reduces additional safety margin and increases the dependence on them

– acceptable to quickly advance and as temporary mitigation solution

– Logging of all feedback system actions used to monitor and identify 
potential problems, and to facilitate feed-forwarding

mailto:Ralph.Steinhagen@CERN.ch
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Feedbacks in Action : Ramp & Squeeze

Orbit-FB & 
Radial-Loop 
Trims (μrad)

Tune-FB trims

Q'(t)-FB trims

Energy (TeV)

Trims became de-facto standard to assess the FB and machine performance

ramp flat-top

β*-squeeze

Q'(t) not used on a day-to-day basis

injection

mailto:Ralph.Steinhagen@CERN.ch
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'What-if-... Scenario' Analysis

Tunes kept stable to better than 10-3 for most part of the ramp and squeeze

Feed-forward errors during snapback probably due to feed-down effects

actual tunes

reconstructed bare tunes

reconstructed tunes with FF only

mailto:Ralph.Steinhagen@CERN.ch
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Things that did not go according to the Cunning Plan...
Or: FBs are only as reliable as their Inputs they are based upon.

… fighting instabilities ...
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BPM Electronics Dependence on Temperature

 

Presently compensated by data post-treatment → max. orbit error < ~ 70 um
– Full temperature control of the crates are under investigation

courtesy E. Calvo
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Transverse Bunch-by-Bunch FB (ADT) & Tune Diagnostic
– Conflicting Requirements

ADT on (max gain)
ADT off

ADT on (max gain)
ADT off

Higher B-b-B FB gain implies also more meas. noise propagated onto beam...

Beam 1 Beam 2

~1 μm

30 nm

For the time being mitigated by reducing ADT gain when Tune-FB is needed
– Under investigation: tune signal derived from ADT actuator control signal

mailto:Ralph.Steinhagen@CERN.ch
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Impact of Mains Harmonics on Beam Stability

Mains harmonics visible in spectrum and (minor) source of emittance growth

    

adapted Q-detection filter to remove this → non issue for LHC Tune-FB
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Mystery of the LHC Year 2010: 
Broad-band perturbation with shifting mean frequency

Hump

400 nm

 

Accepted Control-Room Jargon: of being “humped”

Origin remains unknown but is less of an issue in now (2011)
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Conclusions

Feedbacks facilitated a fast commissioning and used de-facto during every 
ramp and squeeze with nominal beam

Good overall performance with little transmission losses and minimal hick-ups 
related to Q/Q' instrumentation, diagnostics and Q/Q' & orbit feedbacks

Impressive machine stability: Q'(t) and Coupling proved to very reproducible
– enforced by strict pre-cycling following physics, access, circuits 'off', ...
– fill-to-fill corrections appear to be sufficient for the time being

With 2010 intensities no serious issues observed but need to revisit conflicting 
requirements for ADT and Q/Q' diagnostics once reaching the e-cloud barrier

In the pipeline:  beam-based gain-scheduling, polishing user-level interfaces...

Success is not accident: LHC feedbacks are based on years of accumulated 
experience at CERN, BNL, FNAL, DESY, PSI, Diamond, Soleil and Triumf.
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LHC
ROCKS

  
In operation:
2010/11

Thank You for your Attention!
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Tune Spectra during High-Intensity Operation

Snapshot of the day with removed mains harmonics

Raw Spectrum
Filtered Spectrum/

Rejected Mains
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LHC Transverse Schottky (4.8 GHz)

Nice and useful spectra with stable beams at 3.5 TeV:

Limited FB usability: reliability and achievable meas. bandwidth during ramp
→ for the time being limited to measurements during collissions

Single Bunch: Prontons vs Ions Single Bunch: Prontons vs Ions

Revolution frequency in LHC

Schottky bands

B1-V

B1-H

B2-V

B2-H

Courtesy R. Jones, M. Favier

mailto:Ralph.Steinhagen@CERN.ch


R
ea

l-
T

im
e 

B
ea

m
 C

on
tr

o
l a

t t
he

 L
H

C
, R

al
ph

.S
te

in
ha

ge
n@

C
E

R
N

.c
h

, N
ew

 Y
or

k,
 N

Y
, 2

0
11

-0
3-

30

31

Technical Network Performance

Double- (tripple-) redundant switched Gigabit Network: no data collisions/loss

– Max transmission delay ~320 μs (80% due to traveling speed of light)

Total delays dominated by front-end:

Communication un-critical: worst case jitter « feedback sampling frequency!
– Tested (short-term) operation up to 1 kHz (↔ nominal 25 Hz)
– in case of problems: HW-QoS queue dedicated ↔ private network for RT-FBs
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R
ea

l-
T

im
e 

B
ea

m
 C

on
tr

o
l a

t t
he

 L
H

C
, R

al
ph

.S
te

in
ha

ge
n@

C
E

R
N

.c
h

, N
ew

 Y
or

k,
 N

Y
, 2

0
11

-0
3-

30

32

Tune Evolution during Physics

Quirky side effect:

Machine circumference changes are propagated via Q' also to the tune

Probably the slowest high-precision Q' measurement in the World

– Short-Term Tune-Stability of ~10-6!

However, stability during nominal physics operation is typically driven by 
impedance and beam-beam related effects.
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Q/Q'-Stability and Feedback Performance

Analysed a total of  275 ramps, excluded most of early ramps in 2009

early commissioning “physics operation with protons”

ions
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Peak-To-Peak Tune Trim and Tune Variations

Steady performance dominated snap-back...

horizontal plane
vertical plane

Increased Tune-FB  bandwidth 
during the middle of Ion run

specification

horizontal plane
vertical plane

mailto:Ralph.Steinhagen@CERN.ch


R
ea

l-
T

im
e 

B
ea

m
 C

on
tr

o
l a

t t
he

 L
H

C
, R

al
ph

.S
te

in
ha

ge
n@

C
E

R
N

.c
h

, N
ew

 Y
or

k,
 N

Y
, 2

0
11

-0
3-

30

35

Maximum Intensity and Transmission Loss during the Ramp
Beam 1

ions

protons

systematic FastBCT effects

Most losses when switching mode of operation (single bunch → trains → ions)
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Impact of Q/Q' Performance – Protons

Limited or no correlation to transmission losses but beam size growth

Biggest error: emittance growth estimates→ Federico Roncarolo's talk

Correlation between 0.5..0.7, biggest uncertainty derives from BSRT 
→ use only linearity between fill-to-fill but not absolute values → F. Roncarolo
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Hump Structure on longer Time-Scales

Accepted Control-Room Jargon: being “humped”

Partially mitigated by transverse feedback
Origin of this perturbation remains unknown but is less of an issue in 2011

'Hump'
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Residual overall Tune Stability in 2010
Out of 191 Ramps...

155 ramps with > 99% transmission

178 ramps with > 97% transmission

12 ramps lost (6 with Tune-FB during initial 3.5 TeV commissioning)

BBQ 
outages

Q' meas w/o 
Tune'FB

Impressive performance for the first year of operation and low-ish intensities
– caution: 1% loss of nominal beam may become more critical in 2011

Beam 1 Beam 2
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y

B

B
k x

N ∂
∂=

ρ
1

p(t)

I(t)

2998.0
ny kp

x

B ×=
∂

∂

Transfer Function

Machine Optics Model

Feed-Forward Back-Bone – Field-Description for LHC (FiDeL)
Example: b

3
 – Compensation – Static Part

Based on magnet measurements:

Courtesy M. Lamont
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