

2011-03-30 NA Particle Accelerator Conference (PAC'11) – Instrumentation, Controls and Feedback

Real-Time Beam Control at the LHC

Ralph J. Steinhagen, CERN, Beam Instrumentation Group

On behalf and special thanks to: LHC commissioning team, M. Andersen, A. Boccardi, E. Calvo, R. Denz, M. Gasior, L. Jensen, S. Jackson, R. Jones, Q. King, M. Lamont, S. Page, J. Wenninger, and operations crew.

Outline

1-03-30 201 **NAEC** at ime Beam Control Real

Requirements: 'What was specified' vs. 'What was/is needed'
 Underlying Feedback Architecture

Performance and Stability during LHC's First Year of Operation
 Gretchenfrage: "Could or should LHC run without Feedbacks"

Required Changes with respect to Initial Design

Traditional requirements on beam stability...

... to keep the beam in the pipe!

- Increased stored intensity and energy:
 - up to 75 MJ@3.5 TeV in the beam (2011)
 - \rightarrow can quench all magnets/cause serious damage!
- Requirements depend on:
 - 1. Capability to control particle losses
 - Machine protection (MP) & Collimation
 - Quench prevention
 - 2. Commissioning and operational efficiency

Beam 3 σ envel. ~ 1.8 mm @ 7 TeV

- FBs became a requirement for safe and reliable nominal LHC operation
 - implications on controller reliability, availability and system integration
- The main driving constraints:
 - ensuring collimator hierarchy \leftrightarrow minimising local bumps
 - $\Delta x \le 25-50 \ \mu m$ at collimators \leftrightarrow constraints max. allowed oscillations
 - Decay- and snap-back of dipole's multipole components
 - Operating close to third order resonances
 - Keep beam excitation to a minimum: transverse emittance preservation

From Decay/Snap-back expected dynamic perturbations

	Orbit ^[σ]	Tune [0.5·frev]	Chroma. [units]	Energy [Δp/p]	Coupling
Exp. Perturbations ('06):	~ 0.5	0.014	~ 70	± 1.5e-4	~0.01
Nom. Requirements:	± 0.15	±0.001	2 ± 1	± 1e-4	« 0.01
Achieved Stability ('10):	~ 0.1	~ 0.001	±2(7)	~1e-5	< 0.003

- Initial assumptions and plans (2006-2009):
 - Chromaticity considered as most critical parameter
 - FB Priority list: Chromaticity \rightarrow Coupling/Tune \rightarrow Orbit \rightarrow Energy

- What turned out to be needed operationally from 2009 \rightarrow now:
 - <u>**Tune</u>** \rightarrow <u>**Tune</u></u> \rightarrow ...\rightarrow Orbit & Energy/Radial-Loop ... \rightarrow Q'(t) \rightarrow...\rightarrow C⁻</u></u>**
 - impressive Q'(t), C⁻ and beta-beat stability and reproducibility

LHC Feedback Success has a long Pedigree: Years of Collaboration, Development and leveraged Experience

Wide-Band-Time-Normaliser			BNL & CERN collaboration on Q/Q'(-FI	
proposed for LHC BPM system			initially BNL's 200MHz resonant BPM	
Radiation testing showed digital	1999	Г	Tune-FB included in original US-LARP	
acq. needs to be out of tunnel			TWC-based Schottky monitor proposed	
RT control specification, mostly decay-/snap-	2000			
back and nominal performance (no MP yet)			(BBQ) prototyped at RHIC/SPS	
BPM design and capabilities "inspired" specs.	2001		robust Q-meas & unprecedented sensitivity	
Moving digital processing out of the tunnel			 1.7 GHz Schottky prototype at SPS 	
Recognition that collimation will	2002		EET based O tracking on deployed at SPS	
rely on real-time Orbit-FBs			PLL-studies at RHIC	
Orbit-FB prototype tests at the SPS	2003		FNAL-LARP involvement in Schottky design	
IWBS'04: SLS, ALS, Diamond, Soleil and	2004		and front-end electronics	
others \rightarrow affirmed Orbit-FB strategy				
Orbit(-FB) and MP entanglement recognised		Q & Coupling-EB demonstrated at RHIC		
\rightarrow FB: "nice to have" to "necessary"		F	PLL-Q and Q'(t) tracker demononstrated at SPS	
	2006	F	NAL-design/CERN-built 4.8GHz TWC Schottky	
		T	une Feedback Final Design Review (BNL)	
	2007		Joint CARE workshop on Ω/Ω' diagnostics	
	2007		(BNI FNAL Desv PSI GSI)	
			7 \rightarrow affirmed Ω/Ω' strategy	

2009 – the year we established collisions: Q/Q'- & Orbit FBs operational

Specific requirements fairly distributed \rightarrow opted for central global feedback system

- One central controller (OFC + hot spare):
 - higher numerical load
 - higher network load (↔ 170 front-ends)
 - dependence of machine operation on single device
 - easier synchronisation between front-ends and FBs
 - flexible correction scheme changes and gain-scheduling
 - efficient to handle cross-talk and coupling between FBs
 - Orbit-Feedback is the largest and most complex LHC feedback:
 - 1088 BPMs \rightarrow 2176+ readings @ 25 Hz from 68 front-end computers
 - 530 correction dipole magnets/plane, distributed over ~50 front-end computers
- Total >3500 devices involved \leftrightarrow more than half the LHC is controlled by FBs!

- Feedback Controller (OFC) performing actual feedback controller logic
 - Simple streaming task (10% of total load)
 - Beam data quality checks and real-time filtering (80% of total load)
 - Server running Real-Time Linux OS with periodic constant load
 - multi-core, highly redundant MTBF > 22 yrs (spec, 120 yrs meas.)
 - Technical Network as robust communication backbone
 - Service Unit: Interface to high-level software control and interlock systems
 - Proxies user requests, handles asynchronous non-RT tasks

To avoid inherent Cross-Talk between FBs... ... Cascading between individual Feedbacks

- Main strategy: derive meas from FB control variable
 - Q'-tracker using 'Q_{raw} = Q_{meas} Q_{trim}'
 - Sub. Δp/p-mod. from Radial-Loop & Orbit-FB reference

- Initially: Truncated-SVD (set λ_i^{-1} := 0, for i>N)
 - not without issues: removed λ_i allowed local bumps creeping in (e.g. collimation)
- **Regularised-SVD** (Tikhonov/opt. Wiener filter with $\lambda_i^{-1} := \lambda_i / (\lambda_i^2 + \mu), \mu > 0$)
 - more robust w.r.t. optics errors and mitigation of BPM noise/errors
 - \rightarrow allowed re-using same ORM for injection, ramp and 10+ squeeze steps

Orbit Feedback Performance

Orbit feedback used routinely and mandatory for nominal beam

- Typical stability: 80 (20) µm rms. globally (arcs)
- Most perturbations due to Orbit-FB reference changes around experiments

Orbit Stability during one LHC Fill

– new high-accuracy diode-based beam position monitor system: $\Delta x_{res} < 0.5 \ \mu m$

Earth Tides dominating Orbit Stability during Physics:

• Known effect from LEP \rightarrow changes the machine circumference/energy

Testimony to LHC alignment and beam stability!

∆x≈200 µm

- Initial design assumption: no residual tune signatures on the beam (0 dB S/N)
 - Anticipated constant driving of the beam and to limit the required excitation levels – the highly-sensitive BBQ system was developed

- Blessing/Curse after start-up:
 - 1 BBQ turn-by-turn res. < 30 nm
 - 30+dB more sensitivity than other LHC systems
 (e.g. ADT: 1µm, BPM: 50 µm)
 - 2 Ever-present Q oscillations on the few 100 nm to µm level

Luxurious 30-40 dB S/N ratios enabled the passive monitoring, tracking and feedbacks without any additional excitation

LHC Q/Q' Diagnostics and Residual Noise II/II

- However: µm-level oscillations are incoherent "noise" from a Tune-PLL point of view
- Need to excite ~30 dB above this "noise" to recover "passive" FFT performance → 10...100 µm oscillations vs. collimators <200 µm
- Driving the beam with the present ample signals seemed to be inefficient/less robust

PLL tracking in action:

Typical Q/Q'(t) Control Room View 2010 Statistics: Out of 191 Ramps...

- ... 155 ramps with > 99% transmission, 178 ramps with > 97% transmission
- ... only 12 ramps lost with beam (6 with Tune-FB during initial 3.5 TeV comm.)
- ... "if without FBs": 83 crossings of 3rd, 4th or C⁻ resonance, 157 exceeded |AQ|>0.01
- Impressive performance for the first year of operation and low-ish intensities:

Feed-Forward Back-Bone: LHC Software Architecture (LSA) – Magnetic Field Corrections to the "bare" LHC

Today's circuit-by-circuit compensation:

- Model-based FF reduced expected 'Q'(t) swing' from 250 to less than 30 units
 - Low intensity beam survived these initial ramps
 - → testimony to machine linearity and small machine impedance

- Feed-forward of Q'(t)-Feedback signal for next fill turned out to be sufficient!
 - enforced by strict pre-cycling following physics, access or circuits 'off '...

- Could/should LHC run without Feedbacks: NO
 - 1 More than 50% of fills would have probably been lost without FBs
 - mostly during or after of changing the mode-of-operation
 - 2 Even with perfect feed-forward, FBs provide a robustness to operation by mitigating "unforseen" or feed-down effects

However:

"Having a car brake or ESP/ABS system does not justify reckless driving!"

- Feedbacks may and do shadow systematic machine problems
 → reduces additional safety margin and increases the dependence on them
 - acceptable to quickly advance and as temporary mitigation solution
 - Logging of all feedback system actions used to monitor and identify potential problems, and to facilitate feed-forwarding

Trims became de-facto standard to assess the FB and machine performance

'What-if-... Scenario' Analysis

• Tunes kept stable to better than 10⁻³ for most part of the ramp and squeeze

Feed-forward errors during snapback probably due to feed-down effects

Things that did not go according to the Cunning Plan... Or: FBs are only as reliable as their Inputs they are based upon.

... fighting instabilities ...

BPM Electronics Dependence on Temperature

- Presently compensated by data post-treatment \rightarrow max. orbit error < ~ 70 um
 - Full temperature control of the crates are under investigation

Transverse Bunch-by-Bunch FB (ADT) & Tune Diagnostic – Conflicting Requirements

Higher B-b-B FB gain implies also more meas. noise propagated onto beam...

- For the time being mitigated by reducing ADT gain when Tune-FB is needed
 - Under investigation: tune signal derived from ADT actuator control signal

Mains harmonics visible in spectrum and (minor) source of emittance growth

adapted Q-detection filter to remove this \rightarrow non issue for LHC Tune-FB

Mystery of the LHC Year 2010: Broad-band perturbation with shifting mean frequency

- Accepted Control-Room Jargon: of being "humped"
- Origin remains unknown but is less of an issue in now (2011)

Conclusions

- Feedbacks facilitated a fast commissioning and used de-facto during every ramp and squeeze with nominal beam
- Good overall performance with little transmission losses and minimal hick-ups related to Q/Q' instrumentation, diagnostics and Q/Q' & orbit feedbacks
- Impressive machine stability: Q'(t) and Coupling proved to very reproducible
 - enforced by strict pre-cycling following physics, access, circuits 'off', ...
 - fill-to-fill corrections appear to be sufficient for the time being
- With 2010 intensities no serious issues observed but need to revisit conflicting requirements for ADT and Q/Q' diagnostics once reaching the e-cloud barrier
- In the pipeline: beam-based gain-scheduling, polishing user-level interfaces...
 - Success is not accident: LHC feedbacks are based on years of accumulated experience at CERN, BNL, FNAL, DESY, PSI, Diamond, Soleil and Triumf.

Thank You for your Attention!

LONDON 20927

HSBC

SAMSUNG

OF

LE ALIST

TSO

Snapshot of the day with removed mains harmonics

LHC Transverse Schottky (4.8 GHz)

• Nice and useful spectra with stable beams at 3.5 TeV:

Limited FB usability: reliability and achievable meas. bandwidth during ramp \rightarrow for the time being limited to measurements during collissions

- Double- (tripple-) redundant switched Gigabit Network: no data collisions/loss
 - Max transmission delay ~320 µs (80% due to traveling speed of light)
- Total delays dominated by front-end:

- Communication un-critical: worst case jitter « feedback sampling frequency!
 - Tested (short-term) operation up to 1 kHz (\leftrightarrow nominal 25 Hz)
 - in case of problems: HW-QoS queue dedicated ↔ private network for RT-FBs

Quirky side effect:

Machine circumference changes are propagated via Q' also to the tune

- Probably the slowest high-precision Q' measurement in the World
 - Short-Term Tune-Stability of ~10⁻⁶!
- However, stability during nominal physics operation is typically driven by impedance and beam-beam related effects.

• Analysed a total of 275 ramps, excluded most of early ramps in 2009

Peak-To-Peak Tune Trim and Tune Variations

Steady performance dominated snap-back...

Maximum Intensity and Transmission Loss during the Ramp Beam 1

• Most losses when switching mode of operation (single bunch \rightarrow trains \rightarrow ions)

- Limited or no correlation to transmission losses but beam size growth
- Biggest error: emittance growth estimates \rightarrow Federico Roncarolo's talk

Correlation between 0.5..0.7, biggest uncertainty derives from BSRT \rightarrow use only linearity between fill-to-fill but not absolute values \rightarrow F. Roncarolo

Hump Structure on longer Time-Scales

Accepted Control-Room Jargon: being "humped"

Origin of this perturbation remains unknown but is less of an issue in 2011

Residual overall Tune Stability in 2010 Out of 191 Ramps...

- 155 ramps with > 99% transmission
- 178 ramps with > 97% transmission
- 12 ramps lost (6 with Tune-FB during initial 3.5 TeV commissioning)

- Impressive performance for the first year of operation and low-ish intensities
 - caution: 1% loss of nominal beam may become more critical in 2011

Feed-Forward Back-Bone – Field-Description for LHC (FiDeL) Example: b₃ – Compensation – Static Part

Courtesy M. Lamont ³⁹