

Existing SPS and LHC Instrumentation for Crabbed Beams

Marek Gasior for Ralph J. Steinhagen, BE-BI

Outline

- Dependence of Luminous Region on Crab-Angle LHC only
 - second-order: beam-beam tune shift (\rightarrow BBQ, Schottky)
- Direct Methods SPS & LHC
 - Fast-Intra-Bunch-Beam-Position-Monitor (aka. Head-Tail)
 - 'single pick-up scheme'
 - 'two pick-up scheme' one pick-up before and after the cavity
 - Indirect
- Indirect Methods SPS/LHC
 - Turn-by-Turn Wire-Scanner and Synchrotron Light-Monitor
 - Averaged data looks promising on second scale, but need more experience with turn-by-turn measurements → not directly applicable to SPS
 - Non-zero crab-cavity phase-offset \rightarrow closed orbit oscillations
 - a priori a non-issue can be picked-up by any BPM for reasonably large (~urad) crab kick angles

Crab-Cavity Basics

- Crossing angle θ to avoid additional parasitic collisions in the IR
 - Increase angle to avoid long-range beam-beam interaction
 - \rightarrow reduced bunch overlap \rightarrow reduced luminosity:

$$L = L_0 \cdot F_{crossing} \cdot \dots$$

Without crab-cavity: Aim with crab cavity: F_{crossing}. $F_{crossing} \approx 1$ $\frac{\sigma_s}{\sigma_s} \tan(\theta/2)$ crab-cavity crab-cavity interaction region reduced overlap

Crab-Cavities from a Instrumentation Point-of-View Observables I/II

- A Dependence of luminous region overlap on crab angle (LHC only)
- B Direct: orbit difference Δx between head and tail of the bunch
 - Allows direct measurement of cavity kick angle θ and phase error $\Delta \phi$
- C Indirect: increased projected beam size $\Delta\sigma$ along propagation axis
 - e.g. turn-by-turn wire-scanner, synchrotron light, BGI, ...
 - Potential issue: decoupling of beam size beating due to another effect
- difficult to detect pivoting point (cavity phase) with single monitor location in the ring
 → prefer relative measurement before and a few after cavity (e.g. field free region of 20 m)

Crab-Cavities from a Instrumentation Point-of-View Observables II/II

- D Indirect: closed orbit distortions due to feed-down of imperfect cavity phase
 - In case cavity is not phased-in onto the centre of the bunch
 - "Easy" diagnostics, particularly for a single de-tuned cavity
 - SPS BPM (>200 H&V): $\Delta x_{res} \approx 200 \ \mu m/turn$
 - SPS BPM (~2x 1100): Δx_{res} ≈ 50 µm/turn
 - Also covered also by head-tail monitor

 \rightarrow measurement of orbit feed-down effects are a non issue from a diagnostics point of view but may impact machine protection (\rightarrow J. Wenninger presentation)

- Could expect similar luminosity resolution as for the Van-der-Meer scans
 - Minute time scale resolution of better than 10⁻³
 - Should look also at luminous region data from experiments
 - Beam-beam tune shift easily pick-ed up for single colliding bunch pairs (e.g. BBQ)
 - Example Lumi Scan:

- Pro: direct measurement of the figure of merit (luminosity-increase)
 - nom. crab-cavity effects ~20% (?) of total peak luminosity
- Con:
 - No direct measurement does not tell whether the cavity phase angle is correct or in which direction the angle needs to be adjusted
 - Not applicable for SPS feasibility tests (p won't come back soon to the SPS)

Direct Measurement of Crab-Cavity Kick-Angle Existing SPS & LHC Instrumentation

- Head-Tail or Fast-Intra-Bunch-Position Monitor:
 - Long strip-line (60 cm, to avoid signal-reflection mixing)
 - $-\Sigma$ - Δ hybrid (removes common mode signal)
 - Fast-sampling to resolve bunch structure
 - ~ ns bunch length \rightarrow GHz scope bandwidth
 - Mandatory compensation for non-beam effects:
 - pickup- & hybrid response, cable dispersion, ...
 - done and used for year(s) in the LHC (SPS)

- direct measurement of all observables
- poor resolution, in particular for short bunches
- single monitor, difficult to disentangle:
- crab vs. Q' vs. impedance effects causing HT oscillation

 \rightarrow two monitor scheme

Compensation of HT System Response

- True longitudinal bunch profile measurement is distorted by:
 - pick-up response
 - hybrid-response
 - Dispersion due to 7/8" Heliax cabling & analogue scope bandwidth

- SPS good up to about 2.5 GHz
- LHC has much shorter cables and thus better performance \rightarrow ~4GHz
- Accuracies below 10% require compensation (i.e. short bunches)
 - Fourier space deconvolution with measured system response
 - Good compensation to first order but relative measurements preferable

Some Head-Tail Facts and Figures

- Head-Tail Monitor: fast turn-by-turn acquisition a few dozen bunches or trains
 - minimum separation between bunches/train \sim 1 µs, one scope/beam
 - Can be re-triggered within the same turn, re-triggering delay ~2 us
 - Sum- and Delta- 'frame-length x number of turns' limited by scope memory, e.g.:
 100 us x 10 turns, 500 ns x 5000 turns or 2 trains of up to 500 ns x 2500 turns
 - Gains needed to adjust for pilot/nominal bunches
 - 8 bit scope but actual resolution depends more on given parameter and in particular bunch-length
 - Various beam parameter estimates already implemented:
 - Fast intra-bunch beam position measurement of head-tail modes
 - \rightarrow crab-cavity specific angle and phase can be "easily" added/extracted
 - Bunch orbit is sliced in minimum chunks of 0.1 ns (sampling), however: actual independent bunch slices are much wider due to limited analogue BW
 - For the time being: designed/calibrated for 2.5 GHz \leftrightarrow 0.2..0.4 ns
 - Need a bit of development & resources to push this limit higher
 - Bunch intensity estimates \rightarrow nice for fast losses / self-consistent measurement
 - Bunch length estimates: Cos²-, Parabolic-, Gaussian-distribution
 - Bunch power-bandwidth containing 50/95/99% of bunch power/intensity
 - Bunch peak voltage

Head-Tail Example

- Processing and analysis a priori very similar to head-tail analysis
 - However: need to decouple what is head-tail (or impedance) driven and what is crab-cavity induced \rightarrow favours two-HT pick-up scheme
- Example measurements (here head-tail m=1 mode):

- Brief discussion of
 - Crab-cavity phase resolution \leftrightarrow long resolution along the bunch
 - 10 GHz Sampling \rightarrow 0.1 ns
 - much lower limit due to effective analogue bandwidth of 2.5 GHz
 - Improving this is not obvious \rightarrow favours long bunches
 - Crab-cavity kick angle \rightarrow orbit resolution of individual bunch slice

$$\Delta \theta_{meas} \propto \frac{\Delta x_{HT}}{\tau_{HT}} \cdot L_{cavity \to monitor} \sim 20 \text{ m (proposal)}$$

- The larger the distance $\tau_{_{HT}}$ between the head- and tail-slice of the bunch the better leverage arm but also the worse the S/N of the difference and sum signal
 - keep in mind that the ADC is only 8 Bit and
 - has to swallow closed orbit signal offset of the center slice
 - » Electrical/magnetic/mechanical re-centering of pick-up?

- Detecting the crab-cavity induced deflection:
 - $-\,$ Direct cleanest but difficult in terms of BW and S/N $\,$
 - Head-Tail monitors already available in SPS and LHC (one per beam)
 - two-pick-up scheme to disentangle other non-crab effects
 - less sensitive to long./impedance driven turn-by-turn effects
 - Indirect better signals but uncertainties on cavity phase, beam size vs. bunch oscillations, etc.
 - orbit feed-down effects could be picked-up by existing BPM installation
 - Thing that would ease diagnostics (for the SPS tests)
 - centering of orbit in pick-up and cavities
 - long bunches, e.g. 5 ns (SPS: injection only)
 - less constraints on timing
 - · better resolution/separation between individual bunch slices
 - larger bunch population \rightarrow more S/N in the head and tails

