

Tutorial on 'Collider and Cooling'

Disclaimer: this is not a lecture but aim to revise some of the key-aspects:

- Luminosity, energy and their limits
 - Concepts
 - Examples
- Beam Cooling
 - Concepts
 - Examples
- Q&A and advanced lumi topics
 - Crossing angle & 'Hour Glass' effect
 - Magic of integrated luminosity

Accelerator Collider Optimisation Considerations Where every high-energy-physics particle quests starts:

Event Rate \rightarrow the frequency a given particle is created per second *Physics detectors*

given iven $\dot{N}_{event} = L \cdot \sigma_{physics}^{cross-section \rightarrow \text{ probability that a given particle is created}} \rightarrow \text{ probability that a given particle is created}$

Luminosity \rightarrow the frequency of how often the particles are brought in to collisions Accelerator design and operation

Push maximum peak luminosity

 essentially: increase number of particles inside the machine and squeeze them to a confined space to increase the probability of a collision

Push achievable energy E:

- Minimise synchrotron radiation losses: $e^+e^- \rightarrow$ hadrons collider (p^+p^\pm , ...)
- Choice: linear vs. circular
 - Optimise RF cavities + normal conducting magnets (CLIC,ILC)
 - Standard RF cavities + superconducting magnets (Tev,RHIC,LHC)

Why maximum Multi-TeV Collision Energies?

- Physicists want as high as possible
 - useful (competitive) HEP

Need to find a balance between:

- Dipole field which can be reached
- Risks associated with operating at that field
 - splices stability, thermal runaway, splice detection
- Operational efficiency of other systems
 - e.g. cryo recovery time:
 - 5TeV vs. >6h @ 7TeV)

Collider design:

$$L = \frac{N^2 k f_{rev}}{A} \cdot F_{corr.} = \frac{N^2 k f_{rev}}{4\pi \sigma_x \sigma_y} \cdot F_{corr.} = \frac{N^2 k f_{rev}}{4\pi \beta^* \epsilon} \cdot F_{corr.}$$

- N: number of particles per bunch,
- k: total number of bunches,
- σ_x, σ_y : hor./vert. r.m.s. beam size in IR,
- f_{rev} : revolution or repetition frequency,
- $F_{corr.}$: numerical correction factors (hour-glass, crossing angle, ...), $I_{stored} = Nk$

Warning: hadron accelerators tend to express emittance as normalised emittances!!

- Facilitates monitoring of blow-up through the injector chain
- N.B. e-machines: emittance given by energy, damping, lattice rather than injectors

$$\epsilon^* = \frac{\epsilon}{\gamma}$$

 $\sigma_{x,y} = \sqrt{\epsilon \beta(s) + D(s) \cdot \frac{\Delta p}{r}}$

Exercise I – The present, from a circular Accelerator far far away...

- 1 Calculate the luminosity for a beam of 10^{11} protons per bunch circulating at 7 TeV in a ring of C=26.658 km circumference, assuming $\epsilon(\beta\gamma) = 3.1 \mu m$ rad and $\beta^* = 0.55 m$. Emittance is defined for 1σ and there are 2808 bunches per beam. (assume A= $4\pi\sigma^2$)
- 2 Calculate the beam–beam tune shift per crossing for the above.
- 3 Assuming that ΔQ_{bb} should be < 8.3·10⁻⁴, adjust the number of bunches and intensity to maximize the luminosity within this limit. Assume N f_b remains constant.

- Calculate the luminosity for a beam of 10¹¹ protons per bunch circulating at 7 TeV in a 1 ring of C=26.658 km circumference, assuming $\varepsilon(\beta\gamma) = 3.1 \ \mu m$ rad and $\beta^* = 0.55 \ m$. Emittance is defined for 1σ and there are 2808 bunches per beam. (assume A= $4\pi\sigma^2$)
- Calculate the beam-beam tune shift per crossing for the above.
- Assuming that ΔQ_{hh} should be < 8.3·10⁻⁴, adjust the number of bunches and intensity 3 to maximize the luminosity within this limit. Assume N f_b remains constant.
 - What is needed:
 - − Proton mass at rest: $m_n \approx 2000 m_e \approx 0.938 \text{ GeV/c}^2$
 - − At 7 TeV protons are ultra-relativistic \rightarrow β ≈ 1 \rightarrow f = c/C (c ≈ 3.10⁵ km/s)
 - − Beam-beam tune shift (N.B. $r_0 \approx 0.842$ fm):

$$\Delta Q_{bb} \approx \frac{r_0 \cdot \beta^* \cdot N}{4\pi \gamma \sigma^2} = \frac{r_0}{4\pi \gamma} \cdot \frac{N}{\epsilon} = \frac{r_0}{4\pi} \cdot \frac{N}{\epsilon^*} \qquad \text{Independent of } \beta^* \text{ and energy!!}$$

- Not fully "true" for LHC...
- Lumi design (attention 'cm' vs. 'µm' definition):

$$\mathcal{L} = \frac{N^2 k f_{rev}}{4\pi \sigma_x \sigma_y} \cdot F_{corr.}$$

and energy!!

2010and Cooling, Ralph.Steinha Collider School ACAS Accelerato

Exercise II – The future If you would design of the next Linear Collider...

- A linear collider seeks to achieve a centre-of-mass energy of 1000 GeV. Plot a curve of length versus field gradient and use the figure below to decide the frequency which fits a site of 25 km extent (assume a filling factor of 70%).
- Assuming a repetition frequency of 200 Hz and a mean beam radius ($\sigma_x = \sigma_y = 60$ nm), what beam intensity does the linear collider require to reach luminosity of 10^{34} cm⁻²s⁻¹?
- What is the average beam power?

- A linear collider seeks to achieve a centre-of-mass energy of 1000 GeV. Plot a curve of length versus field gradient and use the figure below to decide the frequency which fits a site of 25 km extent (assume a filling factor of 70%).
- Assuming a repetition frequency of 200 Hz and a mean beam radius ($\sigma_x = \sigma_y = 60$ nm), what beam intensity does the linear collider require to reach luminosity of 10³⁴ cm⁻²s⁻¹?
- What is the average beam power?

• here: $P = 1.5 \cdot 10^{11} \cdot 1000 \cdot 10^{9} \cdot 1.602 \cdot 10^{-19} VAs \cdot 200 Hz \approx 5 MW$ (per bunch)

Exercise III – The far future...

- Calculate the lifetime of a muon
 - at 50 GeV circulating in a storage ring and
 - at 4 TeV.
- Calculate the leading parameters (bending radius Q, number of periods, etc.) for a 6 T superconducting ring to store the muons.
- What would be a reasonable repetition (filling) rate for a muon collider at 4 TeV, assuming that a beam should be renewed when it has decayed by one exponential lifetime?

Exercise III – Solution – The far future...

- Calculate the lifetime of a muon
 - at 50 GeV circulating in a storage ring and
 - at 4 TeV.
- Calculate the leading parameters (bending radius Q, number of periods, etc.) for a 6 T superconducting ring to store the muons.
- What would be a reasonable repetition (filling) rate for a muon collider at 4 TeV, assuming that a beam should be renewed when it has decayed by one exponential lifetime?
- What is needed:
 - − muon mass and life-time at rest: $m_{\mu} \approx 200 m_{e} \approx 105.7 \text{ MeV/c}^2$, $\tau_{\mu} = 2.2 \mu \text{s}$
 - A bit of special relativity $E = m\gamma c^2$ and time dilation $\Delta \tau' = \gamma \cdot \Delta \tau$
 - Bending radius of a dipole magnet: $p/e = (B\rho)$
 - From lattice design:

• simple estimate Q
$$\approx \overline{R}/\overline{\beta} \& \beta_{\min,\max} = \frac{(1 \pm \sin(\mu/2))}{\sin \mu} \cdot L_{cell}$$

- e.g. (hadrons) $\Delta \mu = 90^{\circ} \rightarrow \overline{\beta} \approx L_{cell}$

 $(1, \ldots, (1, 2))$

- Electrons \rightarrow comes easily/naturally with synchrotron radiation $\sigma_{x,y} = \sqrt{\epsilon \beta(s) + D(s) \cdot \frac{\Delta p}{T}}$
- Protons \rightarrow can be created in abundance \rightarrow select those fitting to small ϵ
- Secondary beams or rare isotopes, difficult to produce large numbers, e.g.:
 ~10⁶ protons on target to create one (!) anti-proton

Stochastic Cooling
 Van der Meer & Rubbia → Nobel Prize in '84!

Beam Cooling II/II ... Muon Collider and long. Damping

Muon cooling:

$$\frac{d\epsilon_N}{ds} = -\frac{1}{\beta^2 E} \frac{dE}{ds} \epsilon_N + \frac{\beta \gamma \beta_\perp}{2} \frac{\langle \theta_{rms}^2 \rangle}{ds}$$
$$= -\frac{1}{\beta^2 E} \frac{dE}{ds} \epsilon_N + \frac{\beta_\perp E_s^2}{2\beta^3 m_\mu c^2 L_R E}$$

Laser cooling – uses 'Doppler' shift
 ...yet another Nobel Prize in 1997

$$\omega' = \omega \gamma (1 - \beta \cos(\theta))$$

M Ion

Issue: doesn't work with too many ions...

d

Exercise IV – Beam Cooling

 Use the following expression for the cooling rate, and obtain an optimum value for the gain g in the presence of a signal-to-noise ratio ρ. Write down the expression for the cooling rate for this optimum gain.

$$\frac{1}{\tau} = \frac{W}{N} \cdot \left(2g - g^2(1 + \rho)\right)$$

- A cooling system is designed with a central frequency of 300 MHz. What is the sample time and how many particles will be in any one sample of 10^6 a beam of particles circulating in a ring of 25 m radius? (Assume $\beta = 0.96$)
- An electron gun has a source potential of 60 kV. Calculate the momentum of protons with the same velocity
- We wish to cool a beam of protons 5 cm in diameter to an emittance of 40π mm mrad. What is the acceptable alignment tolerance on the electron beam?
- If the proton beam has a transverse emittance of 2π mm mrad. What would be its transverse velocity at a β of 10 m? What does this represent in terms of temperature?
- The transitional state of a 100 keV Li+ beam is excited by a laser frequency of 5485 Å.
 What is the energy level difference which is excited? (1Å = 0.1 nm, h = 4.136·10⁻¹⁵ eVs)
 - Write a short computer program to simulate stochastic cooling with and without mixing.

additional slides follow

Beam-Beam in a Nutshell – Head-On

plots courtes W. Herr

Beam-Beam in a Nutshell – Long Range

- Crossing angle θ to avoid additional parasitic crossings \rightarrow reduced bunch overlap
- "crab cavities" to compensate this effect: rotate the bunches before and after the IR

Beam-Beam Tune Footprint

Example LHC:

- N.B. need to stay much further off these resonance lines due to
 - finite tune width: chromaticity, space charge, momentum spread, detuning with amplitude and resonance's stop band itself

Luminosity: Hour Glass Effect

- Small beam sizes s(s) IR limited by final focus beta-function b_0 . (LHC: $b_0 = 0.55 \text{ m}$)
 - max possible beta function around the detector
 - large b_{max}: more sensitive to field errors and failures (many effects scale with β)
 - max available final focus quadrupole gradient •
 - 'hour glass' effect if β^* similar to bunch length s_s:

counteract with shorter bunches:

19 protons: decrease \mathbf{e}_{s} while keeping $\mathbf{e}_{_{x/y}}$ constant or decreasing ... (not trivial)

Integrated Luminosity

Integrated Luminosity L_{int}

$$L_{int} = \iint_{0}^{T} L(s, \epsilon, \dots, t) dt$$

- _ run time t_r ≈ 10 hours ("free" parameter)
- preparation time t_p
 - magnet cycle
 - injectors,
 - detectors
 - ...
- beam lifetime τ
 - tune
 - tune spread
 - ..
 - (numerical aperture)
 - electron cloud

1st order: $\langle L \rangle \approx L_0 \cdot \tau \cdot \frac{1 - e^{\frac{-t_r}{\tau}}}{t_r + t_p}$

- Recipes to win the SUSY/Higgs Grandprix
 - optimise the machine (τ, t_p)

