

Update on:

Tune and Chromaticity Stability during the last 200 Ramps

Ralph J. Steinhagen, BE-BI

Acknowledgments: OP crew, R. Billen, N. Hoibian, M. Lamont, C. Roderick, ...

Motivation

- Analysed last 209 ramps in terms of Q/Q' (fill $1002 \rightarrow \text{fill } 1431$)
 - 191 ramps with complete set of information (E, intensities, trims, ...)
 - Only 10 ramps with Q' measurements during the ramp
 - most of the early commissioning excluded (1.2 & 3.5 TeV ramps)
- Main aim was to establish a quantitative estimate of:
 - Reliability
 - What were the main issues? Are they fixed now?
 - most cases yes, after introducing |C-| check & 'Median' filter
 - Some pathological fills (logging issues, timing, etc.)
 - Do and where do we need to improve the performance of the BBQbased Tune-Feedback/Diagnostics in view of 2010?
 - \rightarrow will provide update in Evian if noteworthy
 - Reproducibility
 - How stable is the LHC in terms of Q/Q'?
 - How stable is the LHC feedback/-forward scheme?
 - Could we do better? Could we do without beam-based feedbacks?
 - \rightarrow this presentation's focus

Status quo, kept the same snap-back compensation as for 2 A/s ramp:

 Measured differences are incorporated into main sextupoles to keep modeled compensation (spool pieces) clean from fill-to-fill variations.

LHCBC, Update on Q/Q' ramps, Ralph.Steinhagen@CERN.ch, 2010-10-19

Day-to-Day Q'(t) compensation I/II

- Q'(t) routinely measured and corrected at injection (target: Q'_{H/V} := 4)
- Incorporated into ramp assuming pure b3 decay variations
 - gradual-out within first 120 s (ramp-based measurements)
- Example latest 1400 s Q'_{B1H}(t) operation:

• Fairly large variation of up to 20 units of $Q' \rightarrow$ but it's justified

Day-to-Day Q'(t) compensation II/II

- Chroma variations at injection:
 - No clear fill-to-fill trend on injection tune variations visible...
 - Exception: partially or non-standard (≠ physics fill) pre-cycled machine
 - Effect of single re-pre-cycled sector: $Q' \sim \pm 3-4$ units

- Most measurement attempts shoot down
 - \rightarrow no long-term monitoring available
 - \rightarrow no pathological examples (e.g. after sector trip)
- Only a few dedicated systematic Q' measurements during the ramp
 - March'10 (semi-automated), ramp re-commissioning 2 A/s \rightarrow 10 A/s

- "Fairly" reproducible (very low statistics of ~7 ramps), assuming
 - Mostly (only) done with "perfect" pre-cycled machine
 - Need to have some more checks with
 - Fill-to-fill re-measuring of Q' and incorporation into ramp

Chromaticity during the Ramp II/III

Unfortunately, statistics did not increase by much: 6 (useful Q'(t) during ramp)

- Besides snap-back, de-facto the same Q'(t) during three consecutive cycles!
 - The machine can be quite reproducible...
- Decay at 3.5 TeV with 10 A/s ramp visible (less/no decay with 2 A/s):
 - ~6 units max, initially ~1 unit/minute decay
 - compensated by qualitative linear trim
 - 450 GeV-like decay

- Started of ramps with slightly different initial Q' values
 - Normalised (=shifted) for comparisons between ramps

- decay-currents (history) is dying-out with energy, remaining variations:
 - during snap-back: $\Delta Q' \sim 5-10$
 - after snap-back: $\Delta Q' < \sim 2 \parallel$
- Ramp sometimes run with slightly negative chromaticities with present correction/incorporation scheme \rightarrow change gradual-out from 120 to 200 s

Tune Variations during last 191 Ramps... I/III Residual overall Tune Stability

- 155 ramps with > 99% transmission
- 169 ramps with > 98% transmission
- 178 ramps with > 97% transmission
- 12 ramps lost (6 with Tune-FB during initial 3.5 TeV commissioning)

- 122 ramps with > 99% transmission
- 155 ramps with > 98% transmission
- 168 ramps with > 97% transmission
- 10 ramps lost (5 with Tune-FB during initial 3.5 TeV commissioning)

N.B. Correlation between Q and losses is less obvious. Some of the ramps lost for other reasons (Q'<0, trips, ...) \rightarrow to be further analysed. Still (to first order): having the Tune-FB on does not harm the machine.

Tune Variations during last 191 Ramp... II/III 'What-if-... Scenario' Analysis – Out of 191 ramps...

Ramp dynamics and variations are compensated/absorbed by Tune-FB

- ... 56 lost due to low-order (3rd,4th,C⁻) resonance crossing without Tune-FB
- ... 150 exceeding $\Delta Q=\pm 0.01$ tolerance
- ... all above nominal $\Delta Q=\pm 0.0015$ limit

<mark>م</mark> 0.35 TeV Te< **└**0.34 tune B2 energy energy 0.33 0.32 bare 0.31 0.3 0.29 1.50.28 0.27 0.26 0.5 0.25[□]₀ 500 1000 1500 2000 2500 3000

- ... 83 lost due to low-order (3rd,4th,C⁻) resonance crossing without Tune-FB
- ... 157 exceeding ΔQ=±0.01 tolerance
- ... all above nominal ΔQ=±0.0015 limit

Still there is an important bias: operational efficiency/procedures/feed-forward improved with time!

time [s]

- As for Q'(t), no clear fill-to-fill trend on injection tune variations...
 - tune measured & compensated before ramping
 - Initially: gradual out until end-of-ramp
 - Variations possibly due to varying time spent at injection
 - Saw snap-back type structure: gradual-out within first 120 s for 10 A/s
 - \rightarrow improved Tune-FB trim reproducibility (now < 2-3.10⁻³, 2010-09-05)
 - Smaller (<0.003) but measurable decay at flat-top also visible

Day-to-Day Q(t) compensation LSA trims & Feed-Forward Compensation

Analysed last 200+ fills \rightarrow LHC is/could be a fairly stable machine

- Most dynamic/random variations during the first 200 seconds (snap-back)
 → propose to change the gradual-out incorporation to reflect this
- Tune:
 - 0.06 units of systematic corrections
 - About 0.06 units pp of variation at the start of ramp between fills
 - believed to be correlated to time spent at injection
 - Gradual-out within first 120 seconds improved significantly reproducibility down to a few 10⁻³
 - Feedback intercepted more than "random" snap-back perturbations
- Chromaticity:
 - Some remaining measurement-vs-model errors
 - persistent currents of about 15 units missing
 - Snap-back still large, up to 20 units variations from fill to fill
 - 'Decay' at 3.5 TeV: ~ 6 units, ~ 1 unit/minute
 - Not enough statistic to make a long-term assessment or on pathological cases (e.g. trip of sector, quench, partial pre-cycle...)
 - Still, haven't analysed all "lost ramps" \rightarrow will provide an update if necessary

Where to find Q'(t)/Q(t)

- Logging database (LHC→Beam Instrumentation→Tune and Chroma/Beam Feedbacks→ ...):
 - Tune eigen-modes: LHC.BQBBQ.UA[47/43].FFT1_B[1/2]:EIGEN_FREQ_[1/2]
 - excludes effect of |C|, better meas. precision \rightarrow source for Tune-FB
 - 'Unperturbed' Tunes: LHC.BQBBQ.UA[47/43].FFT1_B[1/2]:TUNE_[H/V]
 - Tunes in the absences of |C⁻|,
 - Tune-FB corrections: LHC.BOFSU:TUNE_TRIM_B[1/2]_[H/V]
 - Chromaticity measurement: LHC.BOFSU:CHROMA_B[1/2]_[H/V]
 - Chromaticity-FB corrections: LHC.BOFSU:CHROMA_TRIM_B[1/2]_[H/V]
 - Online via BI-QP Fixed-Display \rightarrow Q' Display (now more routinely used):

