

BI Wall-Current-Monitor

Description of the required FESA class functionality

- first iteration -

Ralph J. Steinhagen

- Some definitions:
 - LHC RF frequency 400 MHz
 - 35640 RF buckets
 - 3564 bunch slots, however only 2808 will be nominally filled
- Some conventions:
 - Too many (mostly empty) RF buckets \rightarrow stick to nom. 25 ns bunch slots and possibly note the nx2.5ns shift if not in nominal bucket
 - Distinguish
 - 'bunch': requested bunch in nominal RF bucket
 - 'satellite': undesired bunch elsewhere
 - mostly much below nominal bunch intensity, but
 - could be a nominal bunch with a RF injection bucket error
 - Targeted time-scale of observations: few-seconds \rightarrow hours (via IIR average filter)
- Calculate each parameters per bunch/satellite (arrays) and provide statistic summary of each parameter per beam for quick access/analysis in logging:
 - e.g. '_MEAN', '_MAX', '_MIN', '_STDEV', '_MEDIAN' (?)
 - Example: 'BUNCH_INTENSITY_MEAN', etc....

Compensation of WCM System Response On the Bunch Shape

Real-life bunch does not necessarily obey 'Gaussian' or 'cos²' shapes

- Most difference/details are only visible at very high frequencies > 1 GHz
- Naïve assumption of bunch being shaped according to Gaussian distribution:
 - 1 σ \rightarrow 68.27% of particles
 - 2 $\sigma \rightarrow \,$ 95.45 % of particles
 - − 3 σ → 99.73 % of particles ↔ 0.3% error of intensity estimate (target?)
 - 4 $\sigma \rightarrow ~99.99$ % of particles
- Response of pick-up, cables, scope at these frequency need compensation!

- True longitudinal bunch profile measurement is distorted by:
 - a) WCM pick-up response \rightarrow design values + measurements by T. Bohl &U. Wehrle
 - b) combiner-response (star-topology) \rightarrow only design (re-measure end '10)
 - c) Dispersion due to 7/8" Heliax cabling & analogue scope bandwidth

- Accuracies below 10% require compensation (i.e. short bunches)
 - Simple Fourier space deconvolution with measured system response
 - However: (too) high numerical complexity if treating raw 100 us frames
- Propose to:
 - split 100 us frames in 'nx50 ns' and shifted 'nx50 ns + 25 ns' slices
 - make compensation configurable: NONE, FULL, CABLE/SCOPE

- number of bunches & satellites
- bunch length \rightarrow various estimates:
 - Cos²-Distribution (best?), parabolic-distribution, Gaussian or n x RMS, FWHM, length containing 50/95/99% of power/intensities
 - time-constants of bunch-length increase
 - per-bunch and statistic summary
- Iong. bunch position \rightarrow not relevant since we average over seconds
 - shifts w.r.t. nominal bucket position (n x 2.5 ns within 25 ns slot)
 - shift within 2.5 ns bucket
- bunch peak voltage
 - Rise/decay time-constant
 - per-bunch and statistic summary
- bunch intensity of 'bunches' and 'satellites' $n_{b}(B1/2)$
 - time-constants of change
 - integrated beam intensity of 'bunches' and 'satellites'
 - per-bunch and statistic summary
- Luminous intensity in the IP " $\Sigma_i (n_b(B1)*n_b(B2))_i$ "
 - IP1, 2, 5 & 8 statistics only
 - \rightarrow rationale: with beam sizes \rightarrow estimates the machine-lumi life-times
 - time-constants of change

Following slides focus more on the technical implementation aspect

- Straight deconvolution of the 100 us frame with the system response has probably a (too) high numerical complexity
- Propose to split 100 us frame into 4000 smaller frames,
 - each 50 ns long \leftrightarrow 500 samples each (or 512 samples \rightarrow faster FFT)
 - Small frame start: 10 ns before nominal bunch slot
 - transient mitigation Small frame stop: ~40 ns before nominal bunch slot
- Deconvolution of system response is easiest via Fourier-Transform:
 - 1 Perform FFT of measured frame with 'N'-samples
 - spectrum of containing Re- and Im-component
 - 2 Multiply beam spectrum with selected complex inv. system response: 'NONE', 'FULL', 'CABLE-SCOPE-ONLY'

$$\Re_{comp} = \sum_{i=0}^{N/2} \Re_{data}(i) * \Re_{filter}(i) \wedge \Im_{comp} = \sum_{i=0}^{N/2} \Im_{data}(i) * \Im_{filter}(i)$$

- keep intermediate result as it is needed for the intensity and powerbased bunch length estimate (too large window, multiple bunches)
- Will provide the corresponding filters, as a start: 'NONE' \leftrightarrow Re(i) = 1 & Im(i) = 0
- 3 Inverse FFT on compensated spectrum
 - yields compensated frame of 'N' sample length
- For determinism/real-time performance of the FESA server
- \rightarrow best to perform this for every slot (regardless whether there is a bunch or not)

Bunch Length Estimates

- Finite Estimates (fit-limits <2.5 ns around peak or 3x noise-floor)
 - COS²-Distribution (probably best): $f(t) = I \cdot \frac{2}{B} \left[\cos(\pi \frac{t}{B}) \right]^2$ for $t \in [-B/2, +B/2], 0$ elsewhere
 - BUNCH_LENGTH_COS2 (DB)/ bunchLengthCOS2 (FESA?)
 - Parabolic-distribution:
 - BUNCH_LENGTH_PARABOLIC/ bunchLengthParabolic
 - 50/95/99% power (by-product of deconvolution/intensity estimate)
 - BUNCH_LENGTH_POWER50,BUNCH_LENGTH_POWER90.../ bunchLengthPower50, bunchLengthPower95,
 - Infinite estimates (N.B. non-physical since RF bucket is finite < 2.5 ns)
 - Full-Width-Half-Maximum (see plot): $FWHM = |x_2 x_1|$
 - Gaussian distribution: $f(x) = \frac{1}{\sqrt{2\pi\sigma_i}} e^{-\frac{1}{2}\left(\frac{t-\mu}{\sigma_i}\right)^2}$
 - BUNCH_LENGTH_GAUSS/ bunchLengthGauss
 - RMS (alternate to Gaussian)
 - BUNCH_LENGTH_RMS/ bunchLengthRMS

Use system-response compensated spectra, e.g:

- Intensity $n_{b} \sim integral of bunch spectrum up to 2.5-GHz$
 - calibration (aka. 'fudge') factor to account for beam-to-pick-up transfer function
 - − bunch-length if integral matches, e.g.: $\sigma_{50\%}$ = 1/f if n_b(f)/n_b(n-GHz) = 0.5, $\sigma_{95\%}$ = 1/f if n_b(f)/n_b(n-GHz) = 0.95, ...

 Maximum frequency that contains 50%, 95% and 99% of bunch-spectral power (↔ bunch intensity)

Rise-/Decay-time Estimates

- \rightarrow same algorithm as used for the beam-current transformers....
- More news asap.