

2010-09-28 LHC Beam Commissioning Meeting Tune Diagnostic Performance during Nominal Ramp

- Follow-up of tune-diagnostic issue seen on Saturday:
 - noise increase during first part of the ramp swamping BBQ tune signals

- At that time two (main) working hypothesis:
 - Intensity-related detector saturation ('Zener' effect) \rightarrow now excluded
 - Long. bunch profile & fill-pattern dependence of BBQ
 - bunch-profile $\rightarrow Q_s$ lines/raises transverse noise floor (linear)
 - fill-pattern \rightarrow reduction of/multiple tune signals (geometric)

LHC-BC BBQ Performance during nominal Ramp, Ralph.Steinhagen@CERN.ch, 2010-09-28

Tune Diagnostics Instrumentation Non-Tune Signal contributions

A little bit in more detail:

LHC-BC BBQ Performance during nominal Ramp, Ralph.Steinhagen@CERN.ch, 2010-09-28

Head-Tail Monitor Acquisition – Longitudinal Bunch (Shape) Stability

Bunch 1 at injection:

Bunch 1 during ramp

- Visible bunch (shape) oscillations \rightarrow this is how the long. blow-up works.
- If we can see this with a scope (percent-level), this certainly saturates the BBQ operating at a ppm-level \rightarrow low-pass mandatory for BBQ (access on Monday)

2010-09-28 LHC Beam Commissioning Meeting Tune Diagnostic Performance during Nominal Ramp

- Reverted changes from last technical stop:
 - BBQ detector operating up to 3 GHz (>6dB more tune signal, more reliable |C-|)
 - BBQ detector with low-pass filter operating up to 500 MHz (operational now)
- Spectra during last ramp
 - Better for V, though we have been 'humped' (ADT gain too high)
 - Broad-band perturbation in H still visible
 - filter excludes intensity/saturation related effects

 \rightarrow a bunch filling pattern and/or long. bunch effect (+ dispersion??)

time [minutes]

What the Tune-FB sees

- Tune is tracked most of the time (in contrast to Fill on Sunday \rightarrow Monday)
 - suspected tracking of (broad!) non-tune interference lines, in particular for the vertical plane..

Horizontal BBQ Spectrum B2 (B1 similar):

Raw Spectra B2V

Vertical BBQ Spectrum B2 (B1 similar):

- A lot of things happen around that time...
- To better understand the effect we should not change to many things at the same time

Tune Diagnostics Instrumentation Direct-Diode-Detection on a slide

- Basic principle: AC-coupled peak detector¹
 - intrinsically down samples spectra: ... GHz \rightarrow kHz (indep. on filling pattern)
 - Triggers on the bunch with the maximum intensity (first-order)
 - Demonstrated by the absence of beam-beam modes in collision tune spectra (only e.g. tunes of non-colliding bunches visible)
 - However (second-order), noise floor depends on the filling-pattern:
 - The 'one' bunch the BBQ triggers on may change turn-by-turn, e.g. due to strong bunch-shape oscillations
- Individual gating on a bunch has been tested at the SPS but non-trivial for LHC
 Problem: >100V trigger voltage with ~1ns rise-time, > 6 month of dev.

What's next? How shall we proceed?

(additional slides follow)

Horizontal BBQ Spectrum B1:

Vertical BBQ Spectrum B1:

High-Gain ADT Operation & Transverse Emittance Growth @ 3.5 TeV (50b Physics Fill)

... but has a measurable impact on the achievable tune resolution:

Tunes: