

Cohabitation of ADT and Q/Q' Diagnostics Systems

– or –

"Someone's noise is someone-else's signal"

Ralph J. Steinhagen, BE-BI

With input from BE-RF: W. Höfle, D. Valuch et al.

Recap: Q/Q' Diagnostics and Residual Noise on the Beam I/II

- Initial design assumption: no residual tune signatures on the beam (0 dB S/N)
 - Anticipated constant driving of the beam and to limit the required excitation levels – the highly-sensitive BBQ system was developed
 - further exploited by a FFT and PLL system
 - Hypothesis: BBQ nm-level sensitivity would be sufficient to operate below the "radar" of excitation impacting operation/protection (less than 1 µm)
 - seemed to be confirmed by tests in the SPS, RHIC, Tevatron, ...
 - After the start-up we were blessed (and/or cursed):
 - 1 BBQ proved to provide a turn-by-turn resolution of better than 30 nm
 - 30+dB more sensitivity than other LHC systems (ADT: 1µm, BPM: 50 µm)
 - 2 Ever-present residual Q oscillations on the few 100 nm to few µm level
 - Luxurious 30-40 dB signal-to-noise ratios enabled the passive monitoring, tracking and feedbacks without additional excitation
 - reliable from day-one for more than a year now, controlling large tune variations during basically every LHC ramp (and most squeezes)
 - Helped also to identify other beam perturbation issues (mains, hump, etc.)

However...

- While great for passive monitoring, the nm- to µm-level beam oscillations are incoherent ("noise") from a FFT/PLL point of view of using explicit excitations.
- Regardless of whether using FFT or PLL:
 - Need to excite ~30 dB above this "noise" to recover the performance of using residual oscillations only (→ 60 dB above BBQ noise floor!):
 - Tune tracking: min. ~20 dB (assuming |C-|=const)
 - Coupling measurement: min. 18 dB (better 26 dB)
 - \rightarrow corresponds to ~10 to 100 μm oscillations
 - For comparison: collimators tolerances at about 200 μm
 - tight window between not locking/tracking and causing beam loss
 - uncertainties on BTF due to collective effects, ADT phase/gain, ...
 - Driving the beam with such ample signals seemed to be inefficient and less robust compared to the performance achieved with the passive-only system and was considered to be used mainly if the signal would drop...
- Since recently, ADT is used to regularly damp injection oscillations and (with exception of flat-top and squeeze) kept 'on' also during ramp and collisions
 - Damping performance improved from a few hundred turns to < 50!!
 - However: as for any other feedback, higher feedback bandwidths ("gain") imply also more measurement noise propagated to the beam...

ADT Interference on Tune Diagnostic Example: 0.1 Hz-Avg. BBQ Spectra @450 GeV, one nominal bunch

- BBQ noise-floor raised by 30 dB, wide Q-peak \rightarrow reduces $\Delta Q_{res} \sim 10^{-4} \rightarrow \sim 10^{-2}$
 - Impacts reliable tune (and coupling) measurement & feedback
 - incompatible with Q'-measurements using small $\Delta p/p$ -modulation
 - loss of additional beam stability diagnostics on mains harmonics, hump, etc.

High-Gain ADT Operation & Transverse Emittance Growth @ 450 GeV

• Not a performance issue: ADT noise/gain does not impact/deteriorate ϵ_n

High-Gain ADT Operation & Transverse Emittance Growth @ 3.5 TeV (50b Physics Fill)

... but has a measurable impact on the achievable tune resolution:

Example (3. ramp 2009-11-30 @00:15):

• (in-spec) noise on RQT[D/F] circuits (5mA vs. max. 600 A)

Challenge of Measuring Q'(t)

- Real-life test/challenge for required Q-resolution and measurement bandwidth
 - Q'(t) → ΔQ_{res} < ~10⁻⁴ @ 2.5 Hz- Q(t) → ΔQ_{res} < ~10⁻³ @ 2.5 Hz

Inputs to operators & feedbacks \rightarrow need to be robust as possible

Q'(t) via radial modulation (∆p/p=2·10⁻⁴@0.25 Hz, limit: res. Q stability @450 GeV)

- With nominal beam (ADT on) "challenging" to measure Q', limits: $\Delta p/p \cdot Q' > \Delta Q_{res} \sim 0.005 (\Delta p/p > 2 \cdot 10^{-4} impractical/incompatible with nominal beam)$
- Default OP procedure: switch ADT 'off' \rightarrow meas. Q' \rightarrow switch ADT 'on'
 - Switching ADT 'on'/'off' has little/no impact on lifetime/ε-blowup

Options to make Q/Q' Diagnostic compatible with the primary ADT Function I/II

Reduced of tune S/N ratio is primary limiting factor, primary option at hand:

- 1 Low(er) ADT gain after injection until end-of-squeeze
 - presently the only viable, reliable and available option until end of 2010
- 2 High ADT gain for first N-turns after injection, then lower-gain
 - same as above, but would simplifies operational procedures at injection
- Three ADT use-cases affecting the Q/Q' diagnostics:
 - A Injection damping (few turns)
 - B Damping during collisions (e.g. beam-beam driven oscillations)
 - very slow tune drifts allow mitigation via longer averaging periods

Present situation OK:

- no or little impact of high-gain operation on Q/Q' diagnostics
- C Operation after injection until end of squeeze \rightarrow noise is an issue
 - Impact of gain-reduction on day-to-day operation seems to be is small:
 - Little/no impact on emittance growth or beam losses
 - Rare (no?) single- or coupled-bunch instabilities (provided Q'>0)
 - In addition: some operatonal ϵ_n -blowup margin in the PS (Mike dicit)

CERN

Test: ADT Gain/Noise Impact on Q/Q' performance

- 6dB gain reduction helps but not sufficient for all operational cases (Q', hump, ...)
- Alternative: need to excite the beam... by up to 20 dB more than with ADT 'off' 10

Summary: Options to make Q/Q' Diagnostic compatible with ADT Function II/II

Reduction of tune S/N ratio (30+dB \rightarrow 5dB) is primary limiting factor:

- 1 Low(er) ADT gain after injection until end-of-squeeze
 - presently the only viable, reliable and available option until end of 2010
- 2 High ADT gain for first N-turns after injection, then lower-gain
- 3 Sacrifical (e.g. non-colliding) bunch for which ADT is disabled/low-gain
 - ADT ready, BBQ bunch selector needs further development (loss of S/N)
- 4 Dead-band in ADT gain function masking oscillations below noise floor
 - Simulation, tests with beam and firmware update required
- 5 Deriving tune from ADT exciter signal (see additional slides)
 - more operational long(er)-term experience needed w.r.t. robustness, resolution, etc.
- 6 High ADT gain & Q-PLL exciting ~30+ dB above ADT's noise floor
 - not without issues: required oscillation amplitudes can reach up to \sim 100 μ m, losses!
 - complex dependence on ADT gain, energy, intensity, collective effects,...
- 7 High ADT gain & Q-PLL exciting ~30+ dB above <u>10x lower</u> ADT noise-floor
 - same as before, but much preferred as ex. levels are less critical (max. 10 $\mu m)$
 - feasibility of noise reduction needs to be demonstrated
 - more operational long(er)-term experience needed w.r.t. robustness, etc.
 - require beam-time for commissioning (e.g. in parallel to regular loss-map checks?)
- 8 High ADT gain & using tranverse Schottky monitor
 - operational long-term experience needed w.r.t. robustness, achievable bw. etc.

Additional supporting slides

ADT Dead-Band

- Hypthesis: there are no instabilities that are constantly driving the beam
 - 'True' for present beam configuration but needs revisiting for smaller bunch spacing
- Two different thresholds to control the gain (switch 'off' \rightarrow 'on' \rightarrow 'off')
 - 1 activate damper if instabilities exceed n-um
 - 2 de-activate damper if oscillations are below m-um (e.g. after x-turns)
 - For example: $m = 2 \mu m < n = 10-20 \text{ um } \& x = 50$
- Strictly: Non-linear hysteresis filter but keeps it linear if ADT is 'on'
- Would fail if frequency of instability occurrences is too high
 - \rightarrow however, should have strong tune signatures in ADT exciter then..

- Two complementary options depending on the actual strength and occurrance frequency of instabilities and coupled bunch modes in the LHC:
 - Rare: \rightarrow dead-band is the better option (= damp only unstable beam)
 - Frequent: \rightarrow ADT exciter signal contains modes and their frequencies
 - issue: reliability and achievable meas. bandwidth $\Delta Q_{res}{<}10^{\text{-3}}$ @ 2.5 Hz?

- Tune-PLL not a 'silver bullet' solution but will be further explored:
 - Complex BTF dependence on damper gain/phase, collective effects:

- Requires excitations 30+ dB above noise floor for reliable signal/lock and coupling measurement: noise ~1 μ m \rightarrow excitation can go up to 100 μ m
- − Detected tune peak shifts with effective damper gain: ± 6dB \leftrightarrow ΔQ≈3·10⁻³

Required S/N ratio for Tune and Coupling Diagnostics I/II

- Initial Q-PLL design assumption violated:
 - no residual tune oscillation, need to drive the beam to get some signal
- Non-PLL "random" signals add vectorial to PLL driven one:

$$\sigma(\varphi) = \arcsin\left(\frac{\sigma_f}{A}\right) = \arcsin\left(\sqrt{\frac{2}{N}}\frac{\sigma_t}{A}\right)$$
for small noise $\approx \sqrt{\frac{2}{N}}\frac{\sigma_t}{A}$

- To lock (ΔQ_{res}≈10⁻⁴): ~20 dB S/N
- − Once locked: $\Delta \phi \approx 0.5^{\circ} \rightarrow 8 \text{ dB S/N}@2.5\text{Hz}$
 - N.B. un-physical steady-state as Q continuously moving during ramp

σ(ወ

Required S/N ratio for Tune and Coupling Diagnostics II/II

- Closest-tune approach not practical while ramping
- Use ratio between regular and cross-term instead:
 - $A_{1,x}$: eigenmode amplitude '1' in horizontal plane
 - $A_{1,v}$: eigenmode amplitude '1' in vertical plane

$$r_1 = \frac{A_{1,y}}{A_{1,x}} \wedge r_2 = \frac{A_{2,x}}{A_{2,y}}$$

$$|C^{-}| = |Q_1 - Q_2| \cdot \frac{2\sqrt{r_1 r_2}}{(1 + r_1 r_2)} \wedge \Delta = |Q_1 - Q_2| \cdot \frac{(1 - r_1 r_2)}{(1 + r_1 r_2)}$$

– requiring resolution so that $\Delta |C| < 0.1 |Q_1 - Q_2|$, and $r = r_1 = r_2 > 0$

 \rightarrow required N/S ration r < ~0.05 \leftrightarrow S/N ~ 26 dB

− requiring resolution so that $\Delta |C^-| < 0.5 |Q_1 - Q_2|$, and r = r₁=r₂ > 0 → required S/N ~ 20 dB

 \Rightarrow

Simplified ADT Mechanics

Limit of proportional controller gain and noise

Cannot have one without the other...

...requires a trade-off between reducing and δ_i/δ_d and minimising the impact of δ_m .

- Operates at a frequency well above (4.8GHz) the ADT bandwidth (<20 MHz)
 - issue: reliability and achievable meas. bandwidth ΔQ_{res} < 10⁻³ @ 2.5 Hz

- Switched from PLL- to k-mod studies (ADT back to nominal, Q'>~2):
 - Missing diagnostics: lost 40% of B2 ADT saviour or culprit?

