

2010-06-23 Internal BI-QP Meeting on SPS BPM Renovation First Iteration on Requirements and System Qualification

- Motivation making SPS compatible as high-intensity injector for LHC
 - Timely renovation of ageing MOPOS system
 - Reduction of systematic e.g. fill-pattern dependences
- First iteration on SPS position measurement system requirements
- System qualification or 'what are the limits' of the existing infrastructure:
 - Shoe-box, buttons & strip-line pick-ups
 - (Super-long) signal cables
 - Low-level analogue electronic dependencies
 - Digital acquisition System
- What are our aims? What can we do?

LHC BPM Specification

LHC-BPM-ES-0004 rev. 2.0, EDMS #327557, 2002, p. 25:

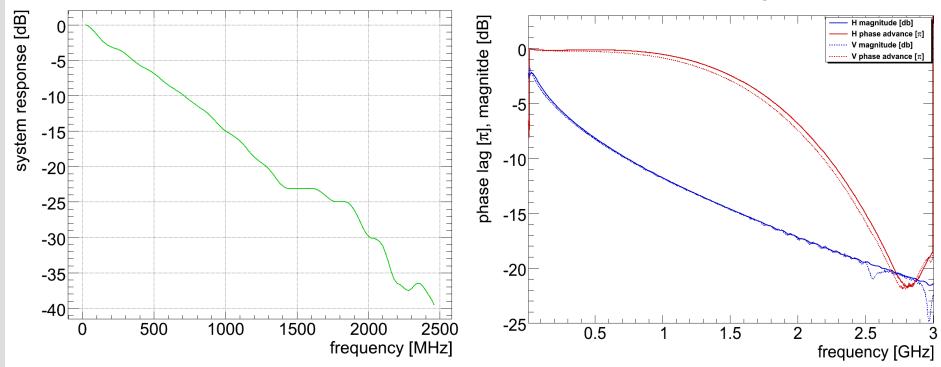
		asure ment	Р	Range	Accuracy	Scale error	Offset	Non- linearity	Resolution
					peak	peak	peak	peak	rms
Beam threading		TR2	*	R2	±2000μm	+	+	+	+
Close trajectory on itself		TR3	*	R1	±500μm	+	NR	+	+
Position error at injection	TR4		*	R1	±500μm	+	NR	+	+
				R1	±50μm	+	NR	+	+
Momentum mismatch		TR5		R1	±1500μm	+	NR	+	+
detection at injection				R1	±250μm	+	NR	+	+
Optics and local Q' checks		TR7/TR8		$\pm \ 1 \ mm \subset R1$	±400μm	+	NR	+	+
•					±50μm	±4%	NR	+	+
	1	ΓR11		R2		NR	NR	±500μm	50μm
Aperture optimisations		CO2	*	R1	±500μm	+	±250μm (±750μm)	+	+
LHC Collimation/Orbit FB	CO3 CO4 CO7			$\pm \ 1 \ mm \subset R1$	±20μm	NR	NR	NR	+
Orbit at injection elements				$\pm \ 1 \ mm \subset R1$	±30μm	+	+**	+	+
Position error at injection				R1			±100μm	±200μm over ±4mm	1000μm
Momentum FB (radial loop)		CO8		R1	±250μm	+	NR	+	+
Dispersion measurements	C O 9	IP		\pm .1 mm \subset R1	±15μm	+	NR	+	+
		other		$\pm \ 1 \ mm \subset R1$	±175μm	+	NR	+	+
b2/a2 to b4/a4 (~TOTEM)	(014		\pm .1 mm \subset R1	±10μm	+	NR	+	5μm

Early SPS BPM Specification Draft (end-2008, J. Wenninger et al)

Operational beam configurations used/envisaged (N_{batch} = 1-13)

Туре	Bunch spacing	Bunch number	Bunch charge [10 ¹⁰]	bunch length [4σ, ns]
FT / CNGS	5 ns	400-4000	0.1-2	1-4
LHC25NS	24.96 ns	N _{batch} x 72	1-20	1-4
LHC50NS	49.92 ns	N _{batch} x 36	1-20	1-4
LHC75NS	74.88 ns	N _{batch} x 24	1-20	1-4
LHC single bunch	524.4-2022.6 ns	1-16	0.2-20	1-4
LHC ion / Pb82+	100 ns	N _{batch} x 4	0.2-2	1-4

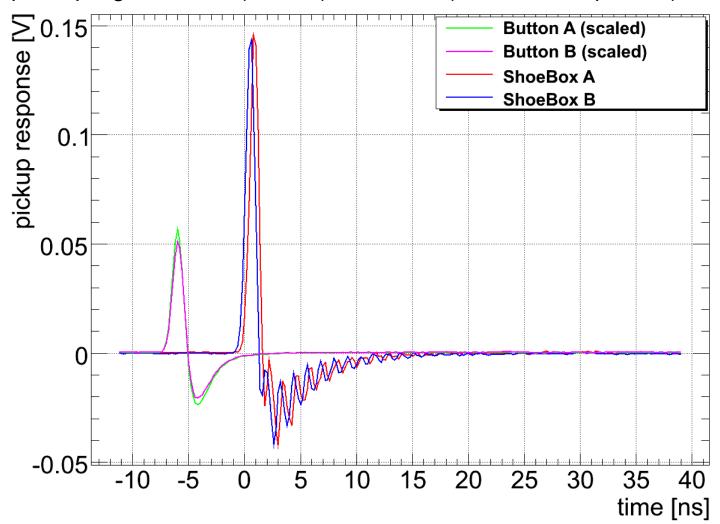
- Orbit@1kHz (40 turns) up to 60 seconds, 100 first turns & 10/100k turns total
- Resolution for large intensity beams (> 5·10¹² p):
 - orbit mode: 0.1 mm
 ↔ BPH: 0.1% (& 0.5%) BPV: 0.2%
 - trajectory: 0.4 mm?
 → BPH: 0.5% (& 1.8%) BPV: 1.0%
- Resolution for single bunches (LHC pilot):
 - orbit mode: 0.4 mm
 ↔ BPH: 0.5% (& 1.8%)
 BPV: 1.0%
 - trajectory: 1.0 mm?
 → BPH: 1.3% (& 4.5%)
 BPV: 2.4%
- Required accuracy: 0.5 mm (w/o alignment) → BPH: 0.6% (& 2.3%) BPV: 1.2


Future "Operational"/Physically Possible Beam Scenarios

- Operational bunch charges: 1·10⁹ → 2-3·10¹¹ protons/bunch
 - Minimum that can be still accelerated: ~10⁸ protons/bunch
 - Maximum that can be still accelerated: ~2-3·10¹¹ protons/bunch ???
- Time structure: 200 MHz or lower harmonics
 - Single bunch: 1-4 ns
 - Typical batch lengths:
 - SFTPRO/CNGS: ~10 μs (old) vs. ~ 4.4 μs (new)
 - LHC-type beam: down to 1 μs
 - » distinction 'batch vs. bunch' less obvious
 - Bunch-by-bunch measurement not strictly required
 - Exception: a few (3-4) pick-ups with LHC-type electronics

LSS5 ↔ ECA5 Cable Calibration LSS4 ↔ ECA4 Cable Calibration

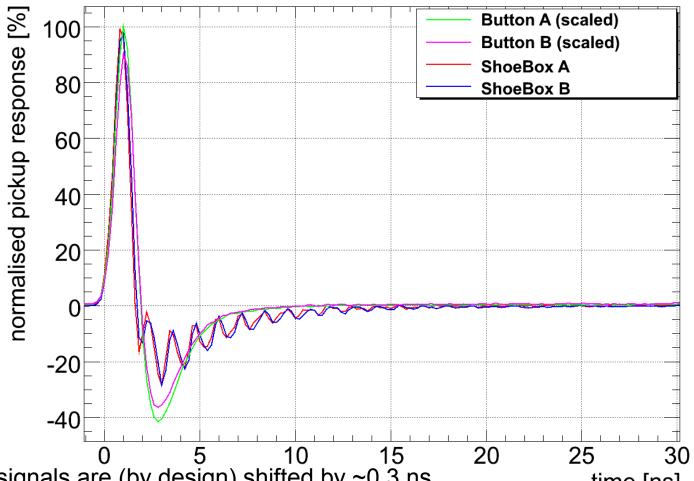
Cable response via open and closed loop S12 setup (NA / pulse generator)



- LSS4 much better bandwidth → not surprising 130 m long 7/8" Heliax cable
- LSS5 more representative w.r.t. cables used by MOPOS: ~ 70 m long CMA50
 - Present MOPOS installation rely on cables that are several 100 m long!
 - Temperature effects, radiation degradation, (replacement) costs, ...

Example: ECA5 Measurement BPH vs. BPMB I/III

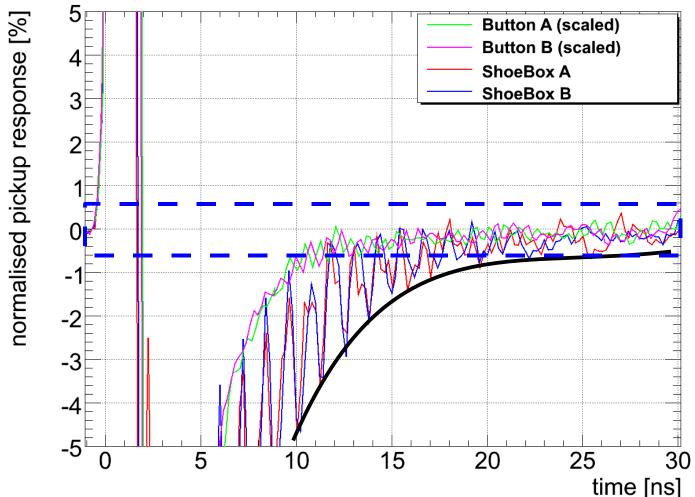
Raw pick-up signals: BPH (77 mm) vs. BPMB (40 mm half-aperture)



- "Fat" LHC pilot bunch ~2·10¹⁰ p/bunch → BPH gives 10x more peak signal
 - N.B. 10dB attenuation for BPMB, 20 dB attenuation for BPH

Example: ECA5 Measurement BPH vs. BPMB II/III

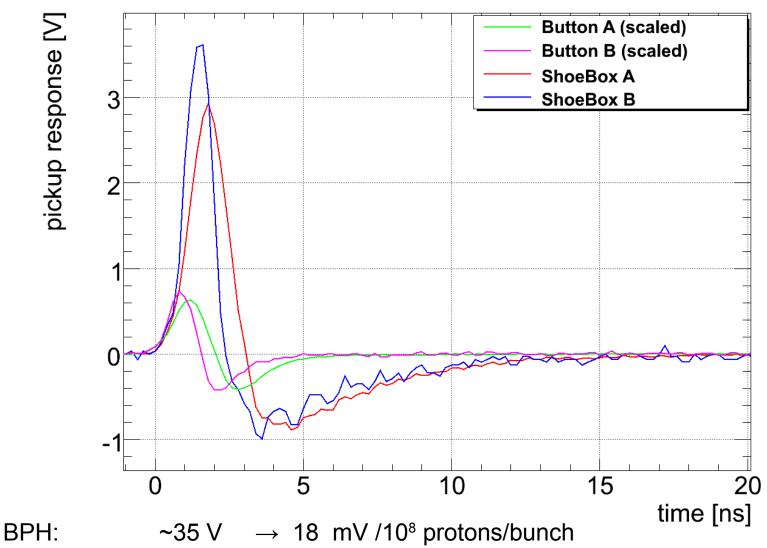
Re-aligned and re-normalised signals:



- BPH signals are (by design) shifted by ~0.3 ns time [ns] → any future analogue FE design needs to take this into account, unless reusing the existing (old) cables prior to the hybrid
- BPH has a much more pronounced ringing than the BPMB

Example: ECA5 Measurement BPH vs. BPMB III/III

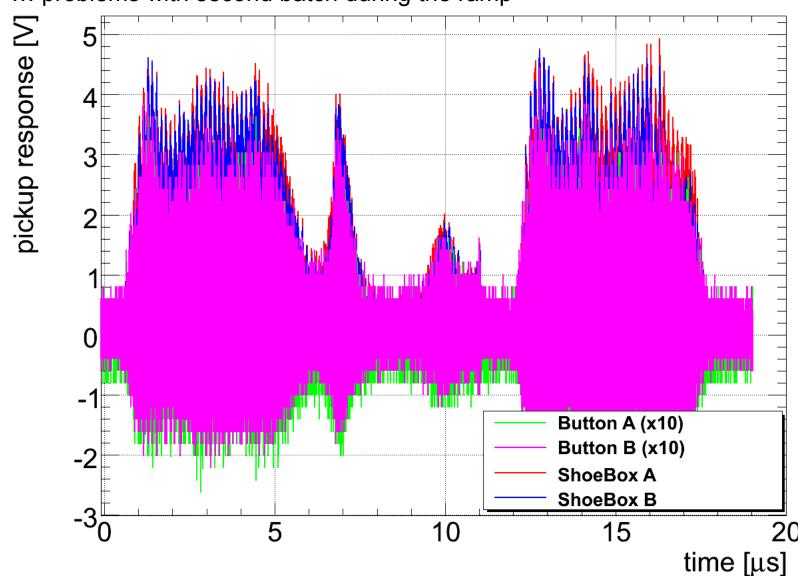
Re-aligned, re-normalised and zoomed-in signals:


- BPH ringing prevails beyond 25 ns → one source of filling-patter dependence
 - worsened by long-cables (bandwidth limitation ↔ dispersion)
 - Transient length and frequency strongly dependent bunch length

BPMB:

Ultimate Intensities

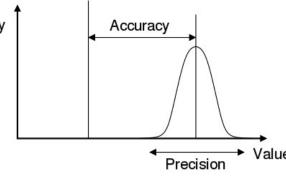
Single LHC bunch at 2.10¹¹ p/bunch


~ $2.5 \text{ V} \rightarrow 1.5 \text{ mV} / 10^8 \text{ protons/bunch}$

a

Typical SFTPRO structure

... problems with second batch during the ramp



Terminology: Accuracy & Precision

Good summary: http://en.wikipedia.org/wiki/Accuracy_and_precision

- Accuracy: "[..] closeness of measurements [..] to its actual (true) value"
 Reference value
- Precision (also: reproducibility or repeatability): Probability "[..] degree to which repeated measurements density under unchanged conditions show the same results."

Example: "Target analogy" and the two extreme cases

High accuracy, but low precision

High **precision**, but low **accuracy**

- Tentative OP specification excludes static alignment errors
 - → measurement reference frame is de-facto the BPM body
 - → remaining errors reducing the accuracy are drifts/dependences of: pick-up response, cables, analogue electronics, ...