

Q(t) and Q'(t) during the Ramp – revisited –

Ralph J. Steinhagen, BE-BI

Special thanks to: G. Arduini, M. Gasior, M. Lamont, M. Pereira and M. Strzelczyk

(Very) Early Estimates prior to First Beam Tune and Chromaticity Drifts during LHC Ramp to 7 TeV

[...] maximum drift rates are expected to be slow in the LHC

- Tune: $\Delta Q/\Delta t|_{max} < 10^{-3} s^{-1}$
- Chromaticity: $\Delta Q'/\Delta t|_{max} < 2 s^{-1} \leftarrow the critical/difficult parameter$
- Requires active control relying on beam-based measurements
- Initial estimate assumed no feed-forward correction!

2

CĚRN

Basically, all ramps until now rely on the Tune-FB, with varying reproducibility:

- Example 2 (a few hours later):

... similar features but not the same. More than a trivial incorporation issue ?!?

Initial Q' Feed-Forward Correction

- b₃ based on FIDEL prediction, initial MCS correction of about Δb3≈7 units
 - Initial model assumption (2 kA & 2 A/s, now: 6 kA & 2 A/s)
- After initial Q' measurement at 450 GeV and 3.5 TeV
 - − added linear compensation of $\Delta Q' \approx 12$
 - \rightarrow fixes start and end point to the same Q'

B1 & B2 Tune and Chromaticity Evolution

- Snap-back at the start of the ramp visible:
 - time-constant about 50-70 seconds (gaussian decay) depending on fitting

Measurement vs. Expectation

Q'(t) evolution compatible with applied FIDEL and linear feed-forward correction, (example is for nominal 7 TeV & 10 A/s operation):

- Explains part of the qualitative Q'(t) evolution
 - However, reconstruction is not as trivial as one may think...

FIDEL, Q(t) & Q'(t) during the ramp, Ralph.Steinhagen@CERN.ch, 2010-04-13

- Reconstruction is convoluted and depends on many parameters:
 - interdependence between snap-back amplitude Δb_3 and time constant
 - A matter of finding the right snap-back, persistent current errors but also time constant (N.B. Δt Increases with increasing Δb_3)!
 - 6 FIDEL parameter for the actual perturbation:
 - » 2 governing the snap-back
 - » 3 the persistent current decay
 - » 1 for the eddy-current component

- Need to de-convolute these12 parameter
- 6 FIDEL parameter for the correction attempt
- Situation confused with de-facto two/"three" pre-cycles at the moment:
 - 'Rampdown Combo': MB/MQ down from 6 kA at 2 A/s
 - 'Precycle' (following access etc.): MB/MQ to 2 kA at 2 A/s, and
 - (unfortunately) a mixture of the two (many fills do not end with a 'programmed dump' but some QPS, cryo or other failure)
- Hope to get these errors down to about $\Delta Q' = \pm 5$ and mop-up the rest (non-reproducibilities, errors due to partial pre-cycles) with beam-based feedbacks.

- Much noisier due to spurious/noisy peak detection
 - Partially due to large Q' (synchrotron side-bands)

attempted to fixed this on the b₃ level (FIDEL on MCS)
→ hasn't been re-qualified with beam yet...