

Status of the Investigations related to The Broad-Band Perturbation Source(s) in the Vicinity of the Nominal Tune Working Points Or 'The Hump'

Ralph J. Steinhagen, BE-BI

Special thanks to: M. Gasior, G. Arduini and the OP crew

- Beam spectrum issues affecting beam diagnostics and operation
 - UPS' 8 kHz line et Co. \rightarrow W. Höfle et al.
 - Residual tune stability (Q' and other higher-order diagnostics)
 - contribution of RQT[D/F] circuits only 10%
 - further investigation pending...
 - Broad frequency "hump" driven beam excitation
 - Better/more systematic understanding of symptoms
 - Could eliminate some circuits as pot. source by switching them 'off'.
 - No single source responsible for this effect has been identified
 - Collimator at nominal settings will make the effect more apparent

Effects seen so far I

- There are at least three++ 'humps', with approx. base-band frequencies: - #1 @ ~ 0.185 f_{rev}, #2 @ ~ 0.302 f_{rev} (vertical tune), #3 @ > 0.333 f_{rev}, and
 - #4 & 5 @ ~0.25 & ~ 0.37 f_{rev} (much smaller and possible harmonic of #)
- Example: Q_v set below 'hump' (red) and after Q_v trim on top of 'hump' #2 (blue):
 - Driving of the tune resonance clearly visible \rightarrow beam size growth \rightarrow losses

- Assuming single dipolar pertubation \rightarrow kick ~ 1 nRad kick only
 - a non-issue if the present tune working point wouldn't be exactly on it Frequency [kHz]

Effects seen so far III – Correlation between Humps I/II

- If structure '#5' is a true second harmonic of '#1' → width difference would give an indication on the base-band origin of the effect
 - Central frequency #1: 0.185 f_{rev} or ~2 kHz
 - Shifting the tune out this region would help for the diagnostics

- Detailed correlation between Hump #1 & #5:
 - likely second harmonic
 - Perturbation #2 (~0.3, vertical tune) could be the fourth harmonic?
 - Would also explain why it is much broader than the others
 - need to move tune off the present tune working point for further studies

Effects seen so far IV

- Structure of the perturbation depends on the observation time-scale, e.g.
 - 0.1 Hz b \rightarrow broad 'hump', or
 - 10 Hz acquisition BW \rightarrow narrow-bandwidth line with shifting mean frequency
- Here, 'Hump' at 0.16 f_{rev} :

Hump on Beam 1 is correlated with the one in Beam 2:

- Amplitude seems to approximately scale with energy (-8dB reduction)
 - excludes some effects (e.g quad. vibration)...
 ... but not all (e.g. quad. current noise)
 - tune spectra before (450 GeV) and after (1.18 TeV) the ramp #6:

- The observed excitation frequency are real and cause a blow-up of the vertical emittance
 - 10 % beam size blow-up within about 5 minutes
 - beam is eventually intercepted at an aperture bottlenecks (e.g. TDI or TCDQ)
 - \rightarrow later collimator would intercept this at an earlier stage

- Verified effect on the hump for following circuits:
 - Both MSI's, transfer lines, RSS, RCO, RCD and vertical 60A orbit correctors → No effect!
- However, whilst effect is visible on both beams, the vertical plane of B2 seems to be more affected:

Effect on Beam Life-Time

- Each transient causes some short term beam-life loss but eventually recovers
 - Again: B2 beam-life time much poorer than for B1
 - FastBCT based beam life-times with minimal collimation:

 Be aware: these life-times tell you how much intensity is kept in the LHC but not in which shape (e.g. transverse/long. bunch sizes)!!

- Not one but at family (at least 3) of different perturbations
- Seen already in 2009 (and 2010)
 - Amplitudes are in the few hundred nanometre range
 - Effect scales down with energy (2009 ramps)
 - Either 'hump' or 'fast shifting line' depending on observation time-scale
 - Correlated between Beam 1 & 2, however while seen on both beams, hump effect on beam-life time is more apparent for B2
 - Additional studies in 2010 revealed no effect on 'hump' regardless of:
 - Tune or chromaticity changes
 - Single or two beam operation
 - Switching 'off'/'on' circuits: MSI's, transfer lines, RSS, RCO, RCD and vertical 60A orbit correctors
 - If B1/B2 RF frequencies are unlocked
 - If B1/B2 RF frequencies are set apart
 - If damper (ADT) power driver being switched 'off'

- A) Find and mitigate the perturbation source the "clean solution"
 - Other circuits/systems: RCS, MS, RF, effects of He flow-rates/orbit
 - More exotic sources: triplet vibrations, beam screen, vacuum pumps → mechanical vibrations in the > 3 kHz range?!?
 - However, we may need soon to move to effective operation with higher intensities

Reserve Slides

Impact

The "clean solution" (if hump not identified soon)

- This does probably not impact 3.5 TeV ramps/operation with a few bunches, However:
- Poor life-time with closed collimators
- Limits the intensity we can store and accelerate nominal beam safely

The "practical solution" (provided beam is stable at 0.45/0.46)

- Buys us some time until we found the 'true' hump source
- Tune/Orbit not an issue with the given diagnostics and controls
- Non-local beta-beating correction may need to be redone

Enlarged Tune Diagram up to 10th order

- Effect of trimming RF voltage from $8MV \rightarrow 4MV \rightarrow 8MV$
 - Only preliminary observations \rightarrow need to redo these more systematically

