

2010-01-12

LHC Q Stability Revisited

M. Gasior & Ralph J. Steinhagen, BE-BI

for the BI-QP team: A. Boccardi, M. Gasior, S. Jackson, R. Jones, R. Steinhagen

- Effects/features discovered so far:
 - Residual tune stability
 - RQT[D/F] circuit current ripple
 - Other sources??
 - Broad frequency "hump" driven beam excitation \rightarrow emittance blow-up
 - Amplitude calibration
 - B1-B2 correlation
 - Beam-Beam coupling effect @1.17 TeV

N.B. will skip particularities of transverse damper & res. 8 kHz line issues \rightarrow found to be related to UPS (courtesy BE-RF)

Residual LHC Tune Stability

Example: 3. ramp (2009-11-30 @00:15, HP-filtered, Q-FB 'off'):

- Residual tune stability $\Delta Q \approx 5 \cdot 10^{-4}$
 - no particular frequency dependence \rightarrow 'white noise'
 - Since it scales with energy → checked relevant quadrupole circuits...

• Tune trim \leftrightarrow circuit correlation as used by LSA & Q-FB:

$$\begin{pmatrix} \Delta I_{RQTD}[A] \\ \Delta I_{RQTF}[A] \end{pmatrix} \approx \frac{p[GeV]}{450 \, GeV} \cdot \begin{pmatrix} +4.3 & +22.2 \\ +22.7 & +3.9 \end{pmatrix} \cdot \begin{pmatrix} \Delta Q_H \\ \Delta Q_V \end{pmatrix}$$

- For comparison:
 - $\text{ e.g. } \Delta Q_{H} = 10^{-4} @450 \text{ GeV} \rightarrow \Delta I_{RQTF} = 2.2 \text{ mA } \& \Delta I_{RQTD} = 0.4 \text{ mA}$
 - Specified nominal current stability (over 0.5 h): $\Delta I = 10^{-5} \cdot 600 \text{ A} = 6 \text{ mA}$
 - Some RQT circuits have short-term stabilities of ~ 1-2 mA
 - Why do some other jitter by up to 10 mA?
 - Is this an effect of the parallel (protection) resistor?
 - Would $'\sigma(I_{RQT[D/F]}) < 2 \text{ mA' feasible or is it too ambitious?}$
 - \rightarrow being investigated/addressed by our PC experts
 - Hampers Q'-tracker operation with targeted mod. amplitudes of ~10⁻⁵
 - − increase dp/p modulation to 10^{-4} in order to compensate for this effect? → many not-so-nice side-effects and implications for every-day operation!!

BBQ spectra with absolute amplitude scaling

BBQ spectra with absolute amplitude scaling

Shifting Frequency Dune \rightarrow LHC's 'Hunchback'

Initially identified has 'hump' but actually a fast frequency shifting oscillation with the mean drifting slowly between 0.25...0.32 f_{rev}

Time-resolved 'hump' structure:

Shifting Frequency Dune → LHC's 'Hunchback' Correlation and Frequency Characteristics

Hump on Beam 1 is correlated with the one in Beam 2:

Shifting Frequency Dune \rightarrow LHC's 'Hunchback'

The 'hump' became more apparent around 2009-11-28 – 2009-12-03

- On the question 'Whether we see the 'hump' at 1.17 TeV':
 - tune spectra before (450 GeV) and after (1.18 TeV) the ramp #6:

- Central frequency shifted down
- Amplitude seems to approximately scale with energy (-8dB reduction)

- Tune kick in B2 was also seen in B1!
 - an indication that we were colliding two beams...

- surprising/interesting: B1-B2 coupling is about 0.15
 - N.B. $n_{b} \approx 3.10^{-9}$ p/bunch

- 'Hump' issue remains:
 - predominantly seen in the vertical plane,
 - beam gets resonantly excited if tune in the vicinity of this frequency
 → emittance blow-up as nicely documented by the BSRT
 - To 1st order unlikely effects causing the 'hump' (tested with beam):
 - ADT, MSI, CODs, ...?
 - Some other remaining questions:
 - Can the MQT[D/F] corrector circuit stability be improved?
 - Why does the beam oscillate with um amplitudes at the tune frequency?
 - Origin of the non-8kHz lines?