

Status of Tune, Chromaticity, and Coupling Measurements

– Take 2 –

Ralph J. Steinhagen, BE-BI

for the BI-QP team: A. Boccardi, M. Gasior, S. Jackson, P. Karlsson*, R. Steinhagen

- Base-line LHC Q, Q' and C⁻ diagnostics
 - Status Quo: what was available in '08 is also in '09
 - BBQ FFT-based Systems: continuous, on-demand
 - hardware re-tested, RBAC access maps, ...
 - Partially: semi-automated Q' measurement
- New functionalities and not commissioned items in 2008:
 - Tune-PLL (though tested in the SPS)
 - Radial (de-)modulation \rightarrow continuous Q' measurement
 - Q' expected to be more critical than Q
 - Prerequisite for any Q' monitoring even more Q'-FB

Back-bone: Base-Band-Q Principle on a Slide

- Basic principle: AC-coupled peak detector
 - no saturation, self-triggered, no MTG timing required, no gain changes between pilot and nominal beam
 - Measured resolution estimate: $< 10 \text{ nm} \rightarrow \epsilon \text{ blow-up is a non-issue}$
 - One of the turn-key systems in the LHC
 - ... some redundancy: 8 systems available vs. 2 needed

2

LHC Base-Line Q/Q' Diagnostics Overview – Q/C⁻ Use-Cases Abstraction

- Three independent BBQ Tune diagnostic chains available per beam:
 - FFT based acquisition of Q,Q'... 'periodic' tested in 2008
 - one measurement every second (8192 turns ↔ ~0.7 seconds)
 - intended use: monitoring/logging, (feedbacks), fill-to-fill studies, ...
 - post-mortem provides beam oscillation for the last ~ 22 seconds
 - FFT based acquisition of Q,Q'... 'on demand' tested in 2008
 - n-measurements synchronised to an external event (BPM, BQ, ...)
 - intended use: exp.-diagnostics, detailed studies, semi-automated Q'
 - \rightarrow most people in the CCC will probably use this device
 - PPL based acquisition of Q, Q'... t.b. commissioned in 2009
 - one measurement at high/reduced acquisition
 - 25 Hz for feedbacks, 1 Hz for general purpose logging
 - main use: monitoring/logging, feedbacks, fill-to-fill studies, ...
 - However: by itself, no Q' diagnostics

LHC BBQ 'on-demand' System Mode of Operation:

- FFT based Q acquisition using either
 - simply no excitation! yielded sufficient data in most cases in '08

- ... if necessary: fall-back to one of the following excitation methods:
 - Chirp-type excitation using the 'RF transverse damper' ↔ Q-PLL
 - for (local) coupling measurement, $Q_h \leftrightarrow Q_v$ mapping, ...
 - Single-turn kick using the 'MKQA' (aka. 'tune kicker' via MTG trigger)
 - for special machine studies, measurements involving BPMs or HT, injection

5/15

Semi-Automatic Q' Measurement here: SPS Example

- TuneViewer GUI further stores a set of machine settings (LSA) : Q/Q'-reference, trim settings, radial loop, E, ...
 - Enables comparison/re-verification: Q^(')-vs-Δp/p, Q^(')-vs-trim, ...

- While there is some automatisation (auto- $\Delta p/p$ trim missing), this remains a cross- or sanity-check only. \rightarrow nom. requirements: $\Delta Q'_{res} \sim a$ few units/s
 - Limited: DB access, high-level data retrieval \rightarrow The rationale for a Q/Q' PLL 6/15

Q Phase-Locked-Loop Scheme on a slide

Q-PLL Commissioning Example: PLL Setup – Step I (HW lag compensation)

- Essentially BTF and compensation consists of the adjustment of four parameters, preferably during injection plateau (stable tune and chromaticity)
 - 1st step: verify necessary excitation amplitude and plane mapping
 - 2nd step: verify long sample delay (once per installation, constant)
 - full range BTF (will be partially done also without beam)

CERN

Example: PLL Setup – Step II (beam phase compensation)

Adjustments of the locking phase (tune-peak – phase matching)

Example: PLL Setup – Step III → Ready for Q/C⁻/Q' Tracking

Status of Tune, Chromaticity, and Coupling Measurements Ralph.Steinhagen@CERN.ch, 2009-10-27

Beam-Transfer-Function \rightarrow PLL lock

- Above step may need to be repeated several times
 - see additional slides on, what can break the loop
- provided absence of "surprises", initial PLL setup with beam can be quite fast
- Including verification of circuit mapping and polarities:
 - ~2-4 half-shifts with per beam per feedback loop

Q' through RF momentum modulation based method

Q' through RF momentum modulation based method

- Controllability of Q' depends on ability to track the tune both accurately & fast
 - intrinsic to this problem:

$$\Delta Q_{res}^{(,)} \cdot \Delta t_{res} = const.$$

- LHC expectations (nominal, expect '09 to be about a factor of five less):
 - Tune: $\Delta Q/\Delta t|_{max} < 10^{-3} s^{-1}$ Chromaticity: $\Delta Q'/\Delta t|_{max} < 2 s^{-1}$ "slow" compared to Q/Q' drifts e.g. in the SPS/RHIC/CPS/PSB

 \rightarrow Chose to tackle the LHC Q' measurement in the high accuracy limit:

- very small but slow $\Delta p/p$ modulation while tracking Q with a PLL
 - f_{mod} : 0.5 Hz (setup) $\rightarrow 2.5$ Hz $\Delta p/p$: ~10⁻⁴ (setup) $\rightarrow ~10^{-5}$ (nominal)
 - (nominal)

Q'-PLL Commissioning I/II – LHC RF Frequency Modulation – tested

- RF frequency modulation tested in collaboration with OP/RF
 - N.B. necessity also for radial loop (freq. limits are hard-coded), OFC output:

At some point of time:

- Systematic logging of modulation state (there is no fast FGC read-back)
- Synchronisation with injections: 'on \rightarrow off \rightarrow on' at each injection
- Time estimate: ~1-2 half-shifts net (assuming no surprise)

Status of Tune, Chromaticity, and Coupling Measurements Ralph.Steinhagen@CERN.ch, 2009-10-27

Q'-PLL Commissioning II/II Modulation Amplitude: Δp/p ≈ 1.85·10⁻⁵

(tracking transients: $\Delta Q'$ feed-down on ΔQ (non-centred orbit) $\Delta Q/\Delta t \gg \Delta Q'/\Delta t \rightarrow SPS$ specific, LHC: $\Delta Q/\Delta t|_{max} < 10^{-4}/5^{+1/15}$

Summary

- and Coupling Measurements Ralph. Steinhagen@CERN.ch, 2009-10-27 Status of Tune, Chromaticity,
- Base-line LHC Q, Q' and C⁻ diagnostics
 - Status Quo: what was available in '08 is also in '09
 - BBQ FFT-based Systems: continuous, on-demand
 - hardware re-tested, RBAC access maps, ...
 - Partially: semi-automated Q' measurement
 - GUI features, cross-checks
 - Most features have been tested without beam as part of the dry-runs
 → only minor re-commissioning expected (tests), 1-2 half-shifts/beam
- New functionalities/not commissioned items in 2008:
 - Tune-PLL (though tested in the SPS) \rightarrow 2-4 half-shifts/beam
 - radial (de-)modulation \rightarrow continuous Q' measurement \rightarrow Q'-FB
 - RF radial loop/modulation \rightarrow 1-2 half-shifts/beam
 - should be commissioned done prior to first ramp for diagnostic not necessarily FB reasons → 2-4 half-shifts/beam

 \rightarrow Need real beam to see which functionalities, conveniences & safety features are actually needed for day-to-day operation

Additional supporting slides –

Why we need time for commissioning the Q-PLL:

Phase-Locked-Loop Locking in the Presence of Coupled Bunch Instabilities, Synchrotron Side Bands and Tune Width Dependences

Advanced PLL Lock issues Residual Tune Oscillations (e.g. HT instabilities)

Ν

- adds vectorial to the carrier signal:
 - excitation amplitude (carrier signal): A
 - noise in time (frequency) domain: $\sigma_{_{t}}(\sigma_{_{f}})$
 - Equivalent number of turns:

$$\sigma(\varphi) = \arcsin\left(\frac{\sigma_f}{A}\right) = \arcsin\left(\sqrt{\frac{2}{N}}\frac{\sigma_t}{A}\right)$$
for small noise $\approx \sqrt{\frac{2}{N}}\frac{\sigma_t}{A}$

Fourier Spectra:

Wavelet Spectra:

Advanced PLL Lock Issues Coupled Bunch Instabilities

- Coupled bunch effects can hamper lock
 - possible causes: impedance driven wake fields, e-cloud, beam-beam, ...

Mechanism (impedance):

- Possible remedy:
 - Detector selects and measures only one (/first) representative bunch

Advanced PLL Lock Issues Synchrotron Sidebands: PLL locks on the largest peak

Option I: gain scheduling

initial lock: open bandwidth to cover more than one side band (PLL noise ~ chirp)

• side-bands "cancel out", strongest resonance prevails

once locked: reduce bandwidth for better stability/resolution Option II: larger excitation bandwidth, multiple exciter or broadband excitation(FNAL)

Advanced PLL Lock Issues Tune Width Dependence I/III

- optimal PLL Settings (1/ α ~ PLL bandwidth/tracking speed):

Advanced PLL Lock Issues Tune Width Dependence II/III

- Optimal PLL parameters (tracking speed, etc.) depend beside measurement noise on the effective tune width.
- Intrinsic trade-off:
 - Optimal PI for large $\Delta Q \leftrightarrow$ sensitivity to noise (unstable loop) for small ΔQ
 - Optimal PI for small $\Delta Q \leftrightarrow$ slow tracking speed for large ΔQ
- Can be improved by putting knowledge into the system: "gain scheduling"

Advanced PLL Lock Issues Exploitation: Tune Width Measurement using PLL Side Exciter

- \rightarrow "free" real-time tune footprint measurement
- \rightarrow measurable dependence of $\Delta Q \sim Q'$

LHC Base-Line Q/Q' Diagnostics Overview – Q/C⁻ Betatron-Coupling Measurement

- No orbit, Q, Q' feedback without control of betatron-coupling
 - FFT/PLL measures eigenmodes that in the presence of coupling are rotated w.r.t. "true" horizontal/vertical tune
 - $A_{1,x}$: "horizontal" eigenmode in vertical plane
 - A_{1,y}: "horizontal" eigenmode in horizontal plane

$$r_1 = \frac{A_{1,y}}{A_{1,x}} \wedge r_2 = \frac{A_{2,x}}{A_{2,y}}$$

$$|C^{-}| = |Q_{1} - Q_{2}| \cdot \frac{2\sqrt{r_{1}r_{2}}}{(1 + r_{1}r_{2})} \wedge \Delta = |Q_{1} - Q_{2}| \cdot \frac{(1 - r_{1}r_{2})}{(1 + r_{1}r_{2})}$$

- Decoupled feedback control:
 - $q_x, q_y \rightarrow$ quadrupole circuits strength
 - $|C^{-}|, \chi \rightarrow$ skew-quadrupole circuits strength

first implemented and tested at RHIC/ tested/operational at CERN

R. Jones et.al., "Towards a Robust Phase Locked Loop Tune Feedback System", DIPAC'05, Lyon, France, 2005

 $\frac{\log y}{Q_2} \xrightarrow{A_2y} \xrightarrow{A_{1,y}} \xrightarrow{Q_1} \xrightarrow{X} \xrightarrow{X} \xrightarrow{A_{1,x}} x$

23/15

 \Rightarrow

LHC Base-Line Q/Q' Diagnostics Overview – Q/C⁻ Betatron-Coupling Measurement (Real-Beam Data)

