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Continuous LHC Beta-Beat Measurements
- Prototyping at the CERN-SPS

E. Calvo Giraldo, M. Gasior, J.L. Gonzales,
R. Jones, R.J. Steinhagen

Beam Instrumentation Group, CERN
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@ Motivation

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19

Motivation: System dependence on known/constant beta-function:
— Machine Protection and Collimation, Physics, Squeeze Diagnostics

— Classic methods: 'kick'-type excitation & BPMs, K-modulation & Q-PLL,
Closed-orbit-response (LOCO)
— cannot achieve the required precision/time-scales under nominal
conditions!

B-Phase Advance Method - Turn-by-Turn
— BBQ based Test-Setup in SPS LSS5
— Systematic and statistical noise contribution

— Exploitation Examples: SPS lattice drifts & off-momentum beta-beat

B-Phase Advance Method - Orbit

Next Steps & Control of Betatron-Function

2/32
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i@ii Feedback Overview Worldwide

s Accelerators can be grouped into three groups

— Light Sources: (list not exhaustive'?)
ALBA, ANKA, ALS, APS, BSRF, BESSY, CLS, DELTA, ELETTRA, ESRF, INDUS2,
LNSLS, SLS, DIAMOND, SOLEIL, SPEARS3, Spring-8, Super-ACO...

* mostly orbit and energy feedback (radial steering) only

— Lepton Collider: LEP*, PEP-II°, KEK-B

« orbit and tune feedback (mostly during ramp)

— Hadron Collider: Hera, LHC, RHIC, Tevatron

« mostly slow orbit feedback, except:
— Hera: Orbit, Tune
— RHIC: Tune®/ Coupling, Chromaticity’
— LHC: Orbit/Energy, Tune/Coupling, Chromaticity, ... optic!?!

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19
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Beam Parameter Stability in Lepton Machines
(e*e- Collider, Light Sources, ...)

Main requirements for orbit stability?:

— Effective emittance preservation
( T, sampling/integration time,T fluctuation time) ﬁl

T, 2T, €p=€)TCE,

T, KT, €, €, t+2Vey€E,, TE_

— Minimisation of coupling
(vertical orbit in sextupoles)

— Minimisation of spurious dispersion
(vertical orbit in quadrupoles)

2
Ax)?2 (Avy)? 0 o
L=1L,-exp (4 x) +( yz) ol/\/l+ —
20_x 20—y 2O-x/y
Ax/Ay  [o] 0 0.5 1 2 3
L, [%] | 100 | =94 | =79 | =37 =11

X

vertical
aperture

L.Farvacque, ESRF
— Collider Luminosity and collision point stability (in case of two separated rings)
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I@ii Beam Parameter Stability in Hadron Mac

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19

Traditional requirements on beam stability...

... to keep the beam in the pipe!

Increased stored intensity and energy:

— sufficient to quenches all magnets and/or to

cause serious damage®

Requirements depend on:

Cooling channel (He)

1. Capability to control particle losses in the machine

* Machine protection & Collimation
* Quench prevention

2. Commissioning and operational efficiency

Beam 3 o envel.
~1.8mm@ 7 TeV

5/32
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@ IWBS'04: “LHC is a pretty dangerous machine”
CA@

Livingston Style plot

—
o
w

—
o
R

-
o

stored beam energy [MJ]

—

10_3 | ||||||i | ||‘|~‘|h|"'r~i | ||||||i | ||||||i un'i*..J
1 10 10 10° 10°

beam momentum [GeV]
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see Chamonix XIV: “Damage levels - Comparison of Experiment and simulation” and PAC'05 for details 6/32
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i@ii Maximum LHC Energy of 7 TeV

s LHC superconducting dipoles may loose superconducting state (“quench”)

— minimum quench energy E,, .. @7 TeV for t~10 — 20 ms

MQE

EMQE <30 md/cm3 vs. E = 350 MJ/beam (nominal LHC)

stored

(or: N__ < 10% protons/m vs. N__ ~ 3 10™ protons)

— sufficient to quench all magnets and/or may cause serious damage
— requires excellent control of particle losses
s Example: un-controlled vs. controlled energy release

\ C = 5.4 10" protons @ 450 GeV
D =7.9 10" protons @ 450 GeV

Vacuum pipe of QTRF in TT40

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19

for details see: Chamonix XIV:
“‘Damage levels - Comparison of Experiment and simulation” and PAC'05

courtesy V. Kain
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i@ii Compromised Machine Protection via Orbit Bumps

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19

s Combined failure: Local orbit bump and collimation efficiency (/kicker failure):
IR2 e.g 'bump in arc’

IR7 )
I - JL Potentially:
<6.70
‘ N, [o]
~7.50

57057
s Primary collimator (TCP) limits [x,(s)| ,, locally to <5.70, secondary collimator (TCS) at~ 6.70

primary halo

MKI TDI TCP&TCS

s To guarantee two stage cleaning efficiency/machine protection:
— Local: TCP must be >0.7¢ closer than TCS w.r.t. the beam — Orbit FB
— Global: no other object (except TCP) closer to beam than TCS

— Orbit bumps may compromise function of machine protection/collimation

— tackled by LHC Orbit Feedback — present R&D efforts on new BPM electronig,,,
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i@ii Compromised Machine Protection through Beta-Beat

s Combined failure: beta-beat and collimation efficiency
IR2 IR7 triplets

B) “Secondary” collimator A) Potentially
becomes primary (here: AB/B = 1) ( B ) <6.70

N, [0]
~7.50

70577

MKI TDI TCP&TCS
s “Collimator gap must be 10 times smaller than available triplet aperture!™

~0.15 ~0.6

A AL
r N N\
max
< ﬁ coll A primary
a X d,. . .
coll triplet E _ Amax
triplet secondary

A) B-Beat reduces required protection: ABR/B = 20 % — 20% tighter collimator settings

B) B-Beat reduces cleaning performance

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19

" R. Assmann, “Collimation and Cleaning: Could this limit the LHC Performance?”, Chamonix XII, 2003 9/32


mailto:Ralph.Steinhagen@CERN.ch

o
~
1
50}
<
o))
S
S
N
=
©
Z
o
LU
@
=
©
o
©
=
£
[0}
0
9
=
=
©
o
%)
5
=
©
S
o©
—
=
7}
©
[}
=
—-—
@©
o}
o
©
e
©
m
(©)
ac
_|
(2]
>
s}
=)
=
=
c
o
(©)

Performance Limitations & Constraints on

If retraction is adjusted such to allow some maximum transient
beta beat and orbit error, then

triplet

Increase
triplet
aperture

| ) ﬁcoﬂ

Increase
beta at
collimators

Small
primary
gap

Sufficient number of
secondaries at
specific phases

N.B.C=8,, - B

A, max
.
Aﬂ max X 1

+ orbit
o

Minimize any
transient beta
beat

Minimize transient
orbit changes

Larger 3" - A way to relax operational collimator tolerances!

RA Chamonix XlI

(However, loose passive protection)



mailto:Ralph.Steinhagen@CERN.ch

Collimation Performance Limitations & Constraints o

: : r
s Maximum allowed safe beam intensity’2: Peak-Luminosity:

T . R L .
min *Yq ~dil
]\"max< 1 Nmax'nbfrev
n Lmax ~ )
, i , 4 1T *
— Min. accept. lifetime: T, .. =10 min. B €
— Dilution length: L,=950m
— Quench level (@7 TeV)R: R =7.6-10° prot./m/s
— Collimation inefficiency: n
0012 Collimation inefficiency vs. orbit error Collimation inefficiency vs. B-beat (3°=0.55 m)
. L FLILL LLL L LA LR L IR L AL AL i .
Coll. system . 2 I : I I 3

MAC Dec 2004

0.01 | version ~2002

0.008

& 3 E 01 F 1 stage E

o 0.006 | i cleaning

[&] s — H . — E

5 ¥ 20m3|r5]a|' I [need to operate herel!
L Ax= m i

= 0.004 [ Hm@co . 0.01 | E
i ] F 2 stage

0.002 | = [ cleaning

| courtlesy Rf Assn|1ann ]

courtesy R. IAssmann'

I N T [N N N T S N N N B | 0001 | I I
0 02 04 06 08 1 12 14 16 0 10 20 30 40 5C

peak-to-peak orbit error [0] Beta beat [%]

" R. Assmann, “Collimation and Cleaning: Could this limit the LHC Performance?”, Chamonix XlI, 2003
2 8. Redaelli, “LHC aperture and commissioning of the Collimation System”, Chamonix XIV, 2005 11/32
¥ R. Steinhagen, “Closed Orbit and Protection”, MPWG #53, 2005-12-16
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Constraint ll: Diffractive Physics

p-p Luminosity using Optical Theorem

Special parallel to point focusing machine optic (3, = 1600 m)
Roman pot with silicon tracker

measures X:
scattered p

A
y«ﬁ/ >}X~e
I - .

— Roman Pots move close to the beam halo, measure dN/dt down to:
2

p_.,2
30 [3d min

— Observables: abs. Luminosity, total p-p cross-section, diffractive physics

quadrupole

ZLmin = ( p Qmin)zN

« Requires good knowledge on
— Beta-functions 3, at IP and 3, at detector

— Beam momentum p
— minimum distance of roman pot x_ w.r.t. beam centre

— Desired: AL/L =1% — At/t =1% — 0.5-A0/8 = Ax/x = 5-10°3

— absolute beam position stability at roman pot (x . ~1mm) < 5 um!!

min

— value of betatron function at IP and RP: — AB/B =1% !! 12/32
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i@ii Limitations on Squeeze Diagnostic

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19

Squeeze involves > 45 individual magnetic strength settings (Optics), so far:
no continuous check on effective optics during/at the end of individual steps

“Classic” methods may not reach/be compatible with nominal requirements
— K-modulation induced Q-Changes: L.[g(s).Ak(s)
 Limit: knowledge on quadrupole transfer function 4
(hysteresis, D&S, B|™* = 4.2km & AQ™<10° — Ak/k <5-10?)

&

— Kick + turn-by-turn analysis of BPM (phase and/or amplitude), limits:
« Potential particle loss (beta-functions at triplet) & emittance blow-up

« Systematic phase errors, amplitude detuning/Landau damping
— large kicks may probe phase advances (dynamic aperture) which may not
be relevant for nominal beam operation/parameters
— beam will be collimated at 6 sigma (kick amplitudes < 1.2 mm @7TeV)!

... not ideal for continuous monitoring/regular operation.

— Closed orbit response analysis (LOCO):
* resolution/performance compatible with nominal operation
 Limit: scan requires several minutes per IP (full scan: ~2 OP-shifts)

13/32
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i@ii Betatron Function via Phase-Advance Measurement

s Long history at CERN. Original idea dates back to SL-BI report (doctoral thesis)
P.Castro, Luminosity and Betatron Function Measurement at [..] LEP, CERN SL/96-70 (BI)

s ... beating in amplitude related to beating in phase:

M(s) S — I 45Bkcos(2-|u(s)—u(a)|—21TQ)Ak(a)da

u(s):=f ——da - 2 - 2

s Phase sampling:

@ © ¢

Case I: Aoy 0 <D py =450 Ag, Ap, =90° - 2 Ag

: A . .
Case Il 0 Py 0 Ay, =45+ Ag, Ay, =90
s Beta-Beat reconstruction (FB/Control would work with phases):
ABy _ cot(Au™) —cot(Apis™)  AB, _ cot(Ap"™) —cot(Apys™) ABy _ cot(Apy™) —cot(Apus™)

B cot(Au™*) — cot(A ") B,  cot(Au™)—cot(Au™*) B cot (Apy") — cot (A uy”)

N.B. Phase-Beating usually used for correction! 14/32
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Base-Band-Q Principle on a Slide

@ Beta-Beat/LHC BPM Prototype System in the SPS-LSSS
ik

_I_ ﬁ Nﬁ BBQ detector

s Basic principle: AC-coupled peak detector
— no saturation, self-triggered, no gain changes between pilot and nominal

— intrinsically down samples spectra: ... 6 GHz -» 1kHz ... f

rev

« Base-band operation: very high sensitivity/resolution ADC available
» Measured resolution estimate: <10 nm — € blow-up is a non-issue

s One of the few turn-key systems in the LHC

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19

— easy/very fast commissioning — done in parallel with RF capture
15/32
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@ Beta-Beat/LHC BPM Prototype System in the SPS-L
ik

Test Setup
s Yet another exploitation of the BBQ Principle

s Digital acquisition: HP Proliant 167,
1U + M-AUDIO Delta 1010
— 8 analogue inputs/outputs, 16”, 1U
— frequency response: 20Hz-22kHz, +/-0.3dB
— >100 dB dynamic range/S/N ratio
— THD: 0.00072% (A/D), 0.00200% (D/A)

—+ BBQ-FE T

30++ dB isolation

BPM - 3d B/splitter in between ports

> WBTN-FE —» DABG64x m

= First iteration: KISS — keep it simple and safe

s With all it pro's and con's: splitting of signals allowed effective cross-
calibration and performance comparisons...

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19

16/32


mailto:Ralph.Steinhagen@CERN.ch

|@ii Beta-Beat/LHC BPM Prototype System in the SPS-LSS5

:I_EV=1OO m :I_EVzZO m :I_Evz100 m
T

beam
T | >

§ BPMB.517 BPMB.518 BPMB.519
S
s s Measurement (markers), sinusoidal fit (solid line):
Z
% 8 1 T T T T T T T T E3P\I\\AB\ ‘:1\9;\ T ; T T : T T T T T T T
9 2 - "/é\ 2 /O ]
2 EL i /c\ /E ABy, _ cot(Au") — cot(A uye™)
® L = = = _ ]
% © 05 \ PMB. B, cot (A pl”) — cot (A pte*)
) - -
] - \ . ABy _ cot(A ™) — cot(Api™)
£ 0 : B+ cot (A ply™) — cot (A pi™)
o -
(0] - —
2 - / ABe  cot(Apuy™) —cot(Auv™)
% 0.5 B+ cot (Auie™) = cot (A p¥”)
@ - ]
i L _
. - A
O
E -1 | | | | | | | | | | | | | E\ | E | | E | | | | | | | |
2 0 2 4 6 8 10 12 14 16
S Ay, time |
2 47&1 ime index
= 12
S < 17/32

'P.Castro, Luminosity and Betatron Function Measurement at [..] LEP, CERN SL/96-70 (BI)
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i@ii Sample-by-Sample Phase Demodulation Scheme

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19

s Modified mixing scheme:

z,() *BP[\

R,(f,)-sin(2mf_-@,)

e

z (t) »BP m

R (f,)-sin(2mf -9,)

sin(2mrf +¢,_ )
rect2polat

A ?,
| ®

cos(2mf +¢, )
sin(2mf +¢,_ )
rect2polat

P,

cos(2mf +@, )

¢,+phase
correction

mod 2 —® — §_ P AU

Az (t) =~ BBy -sin(w, t+@,+u) [

.
\-_’

Az (1)~ BB, - sin(w,t+,+u,)

s Alternative to mixing method: Wavelet Transform, |IR Hilbert transformer

— trade-off: higher bandwidth < lower phase precision

18/32
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i@ii QE.603/QE.604 induced B-Phase-Advance Beating

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19

local phase-advance [deg]

local phase-advance shift [deg]
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I@ii QE.603/QE.604 induced B-Beating

= Corresponding beta-beat: AB _ COt(A“l; )~ COt(A“;; )
B cot (A ;") — cot(A ;")

g C I o S I . BPMB.517 O\E 2 ‘ L - L L L L L ‘;‘:BPMB.517
o 2 10 L /\MM -~ BPMB.518 < - fw ++ BPMB.518
T =3 C - Q. L d
& < - / \ ] <y W
E 5 ] i ]
o B 7 [ o 7
o L 4 L Al ﬂ }\M &ﬂ v\\ |
5 oF- ki MMW%W»MWM OV Y :
: | RS R It E
o L ] r ]
(Uj _57 TARTS i -1: i \M‘”\W\/ V’JW | -
i L [
(o) L B ~ ,
£ 10~ ] & A / ]
%. - T ’ 1 -3: ¥ :
.g_ -157 VW"VW‘/‘ ] - i
@ 0 50 100 150 200 250 0 20 40 60 80 100 120 140 160
£ time [s] time [s]
()
= . . . . .
¢ s Measured beta-beat is compatible with magnet calibration curves.
S . o .
= = Peak-to-peak 3-beat “noise”> ~0.5% s | Ag,,,=0.08
@© 1
@ : vs. Ap___=0.2
g — unlikely due to diagnostic ' -
ol [ Lt I e e et pn e ol S 2
$) 0 Bt SN MR C L Pt AN e e
5 — seen already at LEP: SR E e
(2] =05 - . * B
5 (though not time resolved) :
_, real drift of the optics! web . P Casio CERNSLIGTO (B) p. 01)

monitor
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@ Beta-Beat Sensitivity and Error Estimates

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19

Ao [deg]

Residual resolution/systematic error

AB _

cot (

meas. )

AIJ13

B COt(
Api e =Ap A @y

) — cot (A ul”)

— ARC optics: requires error below ~1°

10?

AB/B [%]

— |IP optics:  requires error below ~0.02°
N.B. Plots have logarithmic z-scale!

10—
5 45° optic —
6 |
4~ .
2:
c
0- |
20 .
45 T
5 i
-8 .
E ]
19 5 10
Ag, [deg]

A, [deg]

°\E102 IR optic (Au =180°)
S B R S
=
g _
o 10
=
5 rc optic
1 » (Ap = 45?)
107
10" 1
A<p[de9?
10— o T LT e 10
B:A(sz 176° (CMS/ATLAS) . °;
6- . <
4&\ o
2\ S ]
0: G%
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'4: ]
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_1nLC ‘ ‘ ‘ ‘ L] -1
190 5 0 5 10

10
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Beta-Beat Measurement Error Sources l/ll

Systematic Phase Errors

s Sources — usually depend on observation/excitation frequency
— Systematicdelays: A@ = 2m-ATf
- Pick-up to acquisition system cable length (e.g. 100 m@ Q,.=0.25f )
— SPS: Ag = 2° LHC Ag = 0.5%: AB/B, (= 3-10% (45° lattice)
— cable delay compensation mandatory for direct 3’-Measurements

— Low-frequency pre-processing and analogue front-end asymmetry (mostly
filters, N.B. Current has been not optimised for those issues)

« Delta 1010 — analogue pre-filter: A@ = 7° (measured)

« ADC clock synchronisation (especially across stations)

« BBQ front end: A(D = 10° measured here: only Chebychev stage shown

-100
=N
£-200
=
£-300 |
n-_q_[:][:] .................................... .............

B0k . .............
0.01 0.1

« Systematic drift: < 0.1° — will be further reduced Frev

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19
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Beta-Beat Measurement Error Sources I/l

Statistical Phase Noise

s Statistical noise adds vectorial to the carrier signal: - —

— excitation amplitude (carrier signal): A /7

— noise in time (frequency) domain: o, (o)) / o(p) \
o Equivalent number of turns: N | [0)
g o(p) = arcsin °r) = arcsin A 2 % I
S A N A \ /
g’- for small noise 2 0, N ~ 7
% to signal ratios ™ ]VX -
E
) Delta 1010 intrinsic phase noise@1Hz
c BT ] 0.001 T T T T e
n O C . B ]
c g AN Best case BPM-+kick: 1 0.0008; .
¢ B 10 S/N=1mm/0.2mm & 2 0.0006- g
g o - \ 1024 turns : - y
5 8 1. | 0.0004 4
5 5 é
= - \"\\\ 1 0.0002
] (= E 0
= E =
g - N 1 -0.0002} .
: : 1 0.0004] :
8 L \ 3 C ]
5 103 ¢ - -0.0006 ]
= 10 20 30 40 50 60 70 80 90 100 -, ]
8 0

12 14 16 18 20 22 24 26 28
time [s]

signal-to-noise ratio 6/A [dB]  -0-00]
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Typical SPS Beam Spectrum

single bunch, ~ 7 -10"° (coasting)
8-107”‘..H..H..H..H\-H L
Based on 128k turns (~ 1.3 seconds) s A ZOOM
— noise floor (time domain): ~100 nm (BBQ1: ~6 nm){§ /A
— driven 'AC-dipole' signal: ~20-30 um =% (
E —10_\ T T T T 1T T 1 T T T T T 7T T T T 7T T T T 7T T T 1 _40:
g " | |
o - 500 |
S 20— ‘[driving-frequency: _60; Mo L AL [‘ \ \
E B e = 0.25 3\/ (/ \ A A / > "\\\ q
(o)) B RF damper exciter) 7oi i LA | s L S LN NG A
{»] 307 ?0820 10825 10830 10835 10840 10845 10850 10855 10860
E - . Q =017 - frequency [Hz]I
40l q =0.13 _
-50 [ il pl
-60
/% 5000 10000 15000 20000 25000 30000 35000 40000
frequency [HZ]

LHC BPMs give ~30 dB less signal than BBQ1 installation (buttons vs. 30 cm strip-line)
Residual tune signals ~ 0.5/2 um (calibrated w.r.t. Signal seen on SPS BPMs)
off-resonance excitation — no emittance blow-up 24132
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i@ii Residual Beta-Beat Drifts - Revisited

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19

Residual phase motion (blue: BPM1->2, red: 0.5*"BPM1->3)

— Acquisition/electronic induced
noise would be “equal’/randomly
distributed over all channels

— GM induced sextupole shifts

* Ax=100 umr.m.s.
— AB/B=0.1-0.2%

 bit too large to be the
only perturbation source...

local phase-advance shift [deg]

06— HH"H“H%AHmi
0_4f Aﬁ.vm AVAU “:“:A“ﬂ.j
S NI L
ot T
o W " “\/’j
Iy I
I
-0.8||| A
5 10 15 20 25 30 35 40
time [s]

45°

Case I: Ae
Case Il: 0

<7-A(P A|~'|12 =45° - Ao, AH12 =90° -2 Ag
0 Ay, =45° + Ao, Ay, =90°

25/32


mailto:Ralph.Steinhagen@CERN.ch

Further Exploitation Possibilities

Chromatic Beta-Beating l/ll

s System can be further exploited for fast and transparent measurements of
physics affecting ABR/B that earlier required significant amount of beam time

s Example: vertical off-momentum [3-Beat:
— Continuous radial modulation: Ap/p=1-10° @ 1 Hz
— One full measurement data set every second!
— (N.B. Step in phase — off-centre horizontal orbit in lattice sextupoles)

-%Zf g_ﬂ WL e ﬂ T
B A
P
i
L
; 0 10 20 30 40 50 ;in'nee?g]

26/32


mailto:Ralph.Steinhagen@CERN.ch

I@v Chromatic Beta-Beating IlI

s RF modulation: Ap/p =110 @ 1 Hz
6

—— I .................... Frs T Fre I .................... | FEYSTTOH PP Frees I ................... T e | SEFTPTSTS NPT { ST T o] | SUFTTTON FPRTN Fres L STCTTR e T ”
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@ Example: SPS LHC1 Cycle-to-Cycle Stability Il/II
7

Phase-Beating

s |n between two coasts...

3 T "] o - [EAp

injection injection - :

plateau plateau -

local phase-advance shift [deg]
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- Beta-Beat

@ Example: SPS LHC1 Cycle-to-Cycle Stability Il/II
7

s |n between two coasts...
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Next Steps l/Il:

Improvement to LHC Test Installations:

s Beside the intrinsic loss of signal due to the 3dB-signal splitter, initial tests
show that sharing and cross-talk effects in been the regular WBTN and Beta-
Beat system appears to be minimal.

— Affects mainly performance with ultra-low intensity bunches (<2-10° p/bunch)

s Further Setup Improvement:
— systematic drifts of analogue front-end stages 0.1°/0.5 hour (* meas)
— Scalability and possible system integration (in view of LHC application)

— Install 3 (+2) B-beat acquisition chains, both planes, either B1 or B2, in
parallel to the regular BPM system, e.g. in LHC beta-cleaning insertion:

=
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1|55
g
g

(¢)] Schematic layout IRT

— 2009: evaluate dynamic LHC beta-beat — re-evaluate

— larger scale/full implementation (2010+)
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@ Next Steps Il/II:
7\ Beta-beat Control

The LHC Prototype system's usefulness is two-fold:

s Provided B does not change: study real beta-beat as a function of time and
use measured values to possibly relax collimation requirements

s Diagnostic and control of experimental insertion optics changes!

= Provided B does change: same as above but — in addition —
use real beta-beat values as an input to a real-time feedback loop
(e.g. primary/secondary collimators, IPs)

— Correction scheme similar to LHC Orbit FB system using the dispersion
suppressor's and other individually powered quadrupoles
(N.B. we are not as “free” in correcting u as for correcting the orbit)

A - SVD - ~_ A
Tu = R, 0ps = Opg BP‘I.T“
— Additional regions of interest: experimental insertions, Inj./Extr. , ...
s The possible merit...
— remove/reduce protection/cleaning limitations on * & stored intensity

“Isn't this worth being further investigated?” — confirmed by APC, LCC

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19
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Conclusions
@]

A real-time 3-beat measurement system has been successfully tested at the
SPS based on the continuous measurement of the cell-to-cell phase advance.

— Achieved resolution: AB/B < 1% @ 1 Hz measurement bandwidth

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19

— Required S/N ratio: ~ 20 um/100 nm — ¢ blow-up is a non-issue
« compatible with nominal LHC operation
— Shared pick-up scheme compatible with regular WBTN function

Measured residual 1% drift of SPS lattice and off-momentum beta-beat

— Diagnostic of higher-order fields (chromatic 3-Beat, single-turn Q, ...)

Present limitations of the system:
— 45° optics (LHC arcs): <0.01° « AB/B << 1% @ 1Hz bandwidth
* residual beta-function stability and S/N ratio
— Exp. Insertion optics: ~0.1° - AB/B = 30% (ap,=178°)
- systematic phase and drifts, can be improved, target: AB/B, = 3%
— Systematic phase (drifts): ADC clock across stations that are km apart

— Controls & integration: radiation hardness, pulling of cables, ...
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@A

additional supporting slides
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@ Example: SPS LHC1 cycle-to-cycle stability
ik

necessary correction

s Fourier Spectrum before and after band-pass filter (carrier at 10.8 kHz)

6dB” - )

we| DEfore band-pass filtering

-GB-

-12dB-

-18dB- 18dB _ .

2408- Q Q,, e after band-pass filtering
y i

-30dB- -

-36dB- Qx _GdB- Qac

0OHz 5000Hz 10000Hz 15000Hz 20000Hz 25000Hz 30000HZ 35000Hz -~
-F2dB-

-78dB

-84dB -
-90dB |

OHz 5000Hz 10000Hz 15000Hz 20000Hz 25000Hz 30000Hz 35000Hz 40000Hz 45000Hz
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@ Impact of Sharing the same Button Pick-up — Dis

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19

Tests with beam in the SPS indicate that there is no obvious cross-talk in
between the regular LHC WBTN (orbit) and the tested diode-based
acquisition electronic used for the continuous beta-beat measurement.

However: sharing intrinsically halves signals seen by the acquisition chain
— Reduced minimum intensity detectable by button-type BPM (2 — 4-10°)

* Only relevant for IR7, may be less of an issue:
— redundancies in IR7: multiple BPMs per cell & collimator
— only affected for below pilot intensities (< 2.6-10° p/bunch)

* N.B. Not an issue for strip-line pickups and/or nominal beam:
— signals are attenuated simplify intensity gain-switching

If this proves to be really an issue, installation of additional pick-ups in the
region of interest may be required.

35/32


mailto:Ralph.Steinhagen@CERN.ch

|@ii Impact of Sharing the same Button Pick-up — Disclaimer li/l|

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19

3 dB splitter transfer function (variation in between splitter — ~ 50-100 um)

0 | ] | | ]
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i@ii Space Domain: - No “black feedback magic”

s Effects on orbit, Energy, Tune, Q' and C- can essentially cast into matrices:

1 . BS DD,
AX(t)=R-5(t)| with Rij_ZSin(TrQ).COS(Auij_TrQ)—FC(ac—llyz)

matrix multiplication

— LHC matrices' dimensions:

1070x 530 2X16 2X32 2x10/12
R, €R R,ER R, E€R R.€R

— control consists essentially in inverting these matrices:

s Some potential complications:

—_ —_

xref_x 2=H1—3.5ss

—>_~_1 -
,<€ — 0,=R Ax

actual

— Singularities = over/under-constraint matrices, noise, element failures,
spurious BPM offsets, calibrations, ...

— Time dependence of total control loop — “The world goes SVD...."

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19
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@ Space-Domain:
7\ Singular Value Decomposition (SVD) on a slide

Linear algebra theorem™:
n X cor. circgﬂ'ts

T eigen-vector relation:
m x R = U X X V Al' ui = E . vi
e i A =RIT
Vi— L& U,

\/

s though decomposition is numerically more complex final correction is a
simple vector-matrix multiplication:

n
- ~

S =R VA% with R'=V AU | o 6§ =

da.
ss ss N
i=0 A

ﬂ

-V, with a,=u; AX

1

s numerical robust, minimises parameter deviations Ax and circuit strengths 0
= Easy removal of singularities, (nearly) singular eigen-solutions have A~0

s to remove those solution: if )\iz 0— '1/)\i =0

s discarded eigenvalues corresponds to solution pattern unaffected by the FB

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19
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@ Space-Domain:
7\ SVD example: LHC eigenvalue spectrum

Eigenvalue spectra for vertical LHC response matrix using all BPMs and CODs:
10°

| | | eigenvalue spectra:
: : LHC injection optics
— LHC collision optics

singular
_solutions

—
o

)
T

eigenvalue [ ]
—
o
N
[ I\IIII|

these correspond
to orbit bumps

o | @thelPs
condition number ~ 10° O
_— indicator of matrix condition
— loss of 12 bits durmg the inversion proceSS| J
V—> use of 64 bit floats is mandatory |

10

—
|

A —
1079 100200 300 200 500
eigenvalue index [ ]
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Gradient Based Search Features

@ Optics and Calibration Uncertainties
CA@

s QOptics imperfections may deteriorate the convergence speed but do not affect
absolute convergence (response functions are 'monotonic'):

s Example: 2-dim orbit error surface projection
perfectoptic —  —  — — Titeration .
beta-beat — m_\m@“nﬁn\

e

o
o
b

I

¢
o~
g

o
o
»

Opvcav.aaLsst (Hrad]

0.04

0.02

0.04 0.05
Oumcav.asLs.et (Mrad]
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i@ii Phase-Advance Beating — Orbit

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19

Scan using two COD magnets (currents: |, & |,) with /2 phase advance:

¢ = 0 — 21T aperture

ideal orbit

— Scan ¢ = 0—n-21, requires ~10-20 seconds/plane/beam (1 mm @ 450 GeV)

« also required for fill-to-fill aperture and BPM calibration/sanity checks

— Measurement idea: convert amplitude-phase to pure phase modulation

» construct/calibrate orthonormal set of CODs

* Rotate 2D-COD vector while monitoring real-time orbit (LHC Orbit FB)

Cpu ()VB(s) | | +VB, - cos(|u(s)—p|—mQ) - 5,(¢)
_2sin(mQ) || +VB, - cos(|u(s)—u|—TQ) - 8,(1)

——

A-sin(|u(s)=2m f-t|-mQ+@,)

— similar treatment as turn-by-turn BPM-to-BPM phase-advance measurement

Ax(s) =~

const. for s=const.
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i@ii Phase-Advance Beating — Orbit

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19

.. a-priori insensitive to BPM/COD calibration

(phase measurement)

However, requires orthonormal pair of CODs,

either by lattice design or via calibration:

1. COD B, B, ratio - calibration: B,-6, = V8,5,

* average orbit excursion in arc, rem. systematic
(N.B. Q=const!)

error is very small: ~ error on 3

avg

2. COD1—-2 phase-advance difference from 90°

» Average k1/k2 phase using all arc BPM
(systematic: un-even BPM spacing)

Same principle can be applied one-to-one on
transfer lines

—

orbit [mm

05"

0.5"

C <‘PS\:éimuIa ion ‘ ]
0 5 10 15 20
time [s]
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i@ii Phase-Advance Beating — Orbit

= Main idea — convert amplitude into phase modulation using trigonometric
identity:

cos (o) -cos(wt)—sin(«)-sin(wt) = cos(x+wt)

asin(x)+bsin(x+o) = Va®+b*+2absin (o) sin (x+@), with

p=arctan2(bsin(«x),a+bcos(x))

\/Fl'61 = \/Fz'62

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19
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Phase-Advance Beating

Diode- & Orbit- based sampling

True real-time (continuous) measurements

Continuous LHC Beta-Beat Measurements, Ralph.Steinhagen@CERN.ch, 2009-03-19

e & @ @

Particular for diode-based method:

@  Superb resolution: Ay =0.1° < AB/B_ < 1%
— Diode-scheme resolution: 10-100 nm

— required amplitude < 30 um

@ Bandwidth: ~0.1 — 10 Hz

@  Compatible with nominal LHC operation

@  by-product: PLL-type tune measurements

s For the time being: only local measurements

s  (Sharing of pick-ups)

Harmonic driven oscillation (no windowing, damping effects)
Fast measurements: 1Hz, 10 - 20 s vs. 4-8 h/beam (LOCO)
Operate well off-tune resonance — emittance blow-up free

Particular for orbit-based method:

@

@ © @ @

Measurement resolution:

2um@1Hz vs. 200 pm (turn-by-turn)

part of injection MP and BPM quality checks
Bandwidth: ~ 0.05 - 0.1 Hz

available at all LHC locations (BPMs)

Very slow process (easy monitoring/less
critical for machine protection)
Ortho-normalisation of COD exciter pair
incompatible with orbit/energy-feedback or
lumi-operation (beam separation at IP)
amplitudes still needs to be ~ tens micrometer
(limit: orbit/BPM short-term stability, 5-10 pm)
May not be compatible with nominal LHC
collimation (limit: 35 ym)

COD-to-COD phase-advance calibration
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