

Tune and Chromaticity Diagnostics

Part I

Ralph J. Steinhagen

Accelerator & Beams Department, CERN Beam Instrumentation Group

Acknowledgments: A. Boccardi, P. Cameron (BNL), M. Gasior, R. Jones, H. Schmickler, C.Y. Tan (FNAL)

Tune Diagnostics - Primer

Laymen/Musician's view (Beethoven's 5th):

- Audience will leave the concert
- \leftrightarrow Beam will leave the vacuum pipe

- Importance of tune:
 - defines beam life-time
 - strong impact on beam physics experiments:

"I don't think we've quite repeated the experiment last time we did it, the glass gave out a middle 'c'."

Recap: Transverse Beam Dynamics I/III A more formal Approach: Hill's Equation

... the mother of all accelerator physics:

$$z^{\prime\prime} + k(s) \cdot z = f(s,t)$$

- k(s): focusing strength, defines:
 - phase advance µ(s)
 - betatron function β(s)
- f(s,t): driving force
- first-order solution:

$$\boldsymbol{z}(s) = \underbrace{\boldsymbol{z}_{co}(s)}_{closed \, orbit} + \underbrace{\boldsymbol{D}(s) \cdot \frac{\Delta p}{p}}_{dispersion \, orbit}$$

t betatron oscillations

 $\mathcal{Z}_{\beta}(S)$

-0.2

-0.4 -0.6

-0.8

-1

0.2

- D(s): dispersion function [m] \rightarrow typically: few cm to a few meters

geo-Z [a.u.]

-0.5

- − $\Delta p/p$: relative momentum offset w.r.t. c.o. → typically: $10^{-3}...10^{-4}$
- Main tune dependent part:

$$\boldsymbol{z}_{\beta}(s) = \sqrt{\epsilon_{i}\beta(s)} \cdot \sin(\mu(s) + \phi_{i})$$

 $\varepsilon_{i}, \Phi_{i}$: initial particle state

particle describe sinusoidal oscillations in a circular accelerator

Ø

^{0.6} 0.8 1 geo-X [a.u.]

0.4

-0.2

-0.4

-0.6

-0.8

Q' Diagnostics, CAS Dourdan, France, Ralph. Steinhagen@CERN.ch, 2008-05-3'

Recap: Transverse Beam Dynamics II/III Tune Diagnostic Principle

Free Betatron Oscillations:

$$z_{\beta}(s) = \sqrt{\epsilon_i \beta(s)} \cdot \sin(\mu(s) + \phi_i)$$

- Betatron Phase Advance: $\mu(s)$
- Tune defined as betatron phase advance over one turn:

$$Q := \frac{1}{2\pi} \oint_{C} \mu(s) \, ds \quad \text{common:} \quad Q = \underbrace{Q_{int}}_{integer \ tune} + \underbrace{q_{frac}}_{fractional \ tune}$$

- Tune measurement options:
 - 1. Single-turn: 'count oscillations along circumference' (usually while threading 'first turn')
 - 2. Turn-by-turn: pick and observe the oscillation at a given single BPM

 $\Delta z_{\beta} = \sqrt{\epsilon_i \beta} \cdot \sin(\mu + \phi_i + 2\pi Q \cdot n)$

►FFT analysis returns q_{frac}

Individual bunch particles usually differ slightly w.r.t. their individual tune
 → Literature: "Landau Damping" (Historic misnomer: particle energy is preserved!)

Part I:

- Recap: What the is 'Q', Oscillations Dampening \rightarrow just done
 - Perturbation Sources, Requirements
- Tune Diagnostics
 - Classic Fourier-Transform Based
 - Detectors: BPMs, Diode-Peak-Detection, (Schottky → F. Casper)
 - Phase-Locked-Loop (PLL) Systems
- Advanced Topic \rightarrow your choice

Part II: \rightarrow in about an hour

- Recap: Definitions, Requirements & Constraints
- Classic Chromaticity Diagnostics
 - Momentum shift $\Delta p/p$ based Q' tracking methods \rightarrow LHC examples
 - Collective Effects
 - Head-tail phase shift
 - De-coherence based methods: PLL Side-Exciter

Ø

- Why do we need to measure the tune at all? Does it change?
- Quadrupole strength (hor. focusing):
- Quadrupole gradient errors: $k(s) \rightarrow k_0(s) + \Delta k(s)$
 - saturation of iron yoke, magnet calibration errors, power converter ripple, etc.

$$\Delta Q = \frac{1}{4\pi} \beta(s) \cdot \Delta k(s)$$

 \rightarrow watch out for quadrupole errors at large beta functions (e.g. final focus)!

 $k(s) = \frac{q}{p} \frac{\partial B}{\partial x}$

- Energy perturbation $p \rightarrow p_0 + \frac{\Delta p}{p_0}$
 - Main dipoles vs. quadrupoles mismatch \rightarrow *natural chromaticity* Q'_{nat}

$$\Delta Q = -\frac{1}{4\pi} \beta(s) \cdot \left(k(s) \cdot \frac{\Delta p}{p_0} \right) \sim Q'_{nat.} \cdot \frac{\Delta p}{p_0}$$

$$= \text{RF frequency change (aka. radial steering)}$$

$$= \Delta Q := Q' \cdot \frac{\Delta p}{p_0} \quad \rightarrow \text{ defines machine's chromaticity Q'}$$

 \rightarrow bottom line: tune is usually not a constant

Tune Perturbation Sources Example LHC: Start of Acceleration Ramp

 $\Delta Q/\Delta t|_{max} < 10^{-3} s^{-1}$

- LHC Tune drift due to decay & snapback:
 - effect intrinsic to superconducting magnets
 - Tune drift (without b_3 effects): $\Delta Q \approx 0.1$
 - Tune change rate:

- Transverse beam size as an impact on accelerator performance
 - smaller beam-sizes σ favourable
 - HEP colliders: higher luminosity
 - Light Sources: higher brightness
- beam size increases quadratically with angular kick δa

$$\frac{\Delta \sigma}{\sigma} \approx \frac{1}{2} \left(\frac{\delta a}{\sigma} \right)^2$$

- N.B. for electrons, esp. synchrotron light sources, this is partially compensated by energy losses due to synchrotron light radiation.
- Protons: memory effect the beam does not forgive...!
 - LHC limit: δa << 10 μm = ~1/20 σ !!
- Further constraints on kick amplitudes: aperture limitations due to functional insertion, machine protection systems, ..

\rightarrow Limit excitation to necessary minimum, favours passive/sensitive systems

Tune Stability Requirements & Constraints II/III

Unstable particle motion reduces beam-lifetime (~dynamic aperture) if resonance condition is met:

$$p = m \cdot Q_x + n \cdot Q_y \land m, n, p \in \mathbb{Z}$$

similar relation also in between Q_x & Q_s
 (important for lepton accelerators)

Resonance order: O = |m| + |n|

- Lepton accelerator: avoid up to ~ 3rd order
- Hadron colliders:
 - negligible synchrotron radiation damping
 - need often to avoid up to the 12^{th} order

"Hadron beams are like elephants – treat them bad and they'll never forgive you!"

• Example LHC: Tune stability requirement: $\Delta Q \approx 0.001$ vs. exp. drifts ~ 0.06

- N.B. need to stay much further off these resonance lines due to
 - finite tune width: chromaticity, space charge, momentum spread, detuning with amplitude and resonance's stop band itself

- Classic, using BPMs with 'kick' or 'chirp' excitation
 - limited by aperture constraints
 - Performance reduction
 - typically: $\Delta z \leq 0.1 \sigma$
 - Loss of particles & protection
 - LHC: $\Delta z \le 25 \ \mu m \& \Delta p/p \le 5.10^{-5}$
 - limited by emittance blow-up
- Passive monitoring of residual oscillations:
 - Schottky monitors
 - Diode-Detection based Base-Band-Q (BBQ) meter

- Active Phase-Locked-Loop (PLL) systems
 - In combination with RF modulation
 - \rightarrow chromaticity tracking

Q

• Control Theory \rightarrow System Identification

E(s)
$$\xrightarrow{exciter signal}{(known)} \rightarrow G(s) \xrightarrow{beam pickup}{signal} \rightarrow X(s)$$

■ Example (first order) beam response ≈ damped harmonic oscillator resonance (ω_0 : resonant frequency (Q), λ : tune resonance width (σ_Q), ω : driving frequency)

$$|G(\omega)| := \left| \frac{X(s)}{E(s)} \right| \approx \frac{\omega_0}{\sqrt{\left(\omega^2 - \omega_0^2\right)^2 + \left(2\lambda\omega_0\omega\right)^2}}$$

- Excitation choices:
 - White or remnant noise
 - no information on signal phase
 - Single-turn transverse kick (classic)
 - Frequency Sweep aka. 'Chirp'
 - focuses excitation power on frequency range of interest \rightarrow less ϵ -blow-up, constant power
 - Phase-Locked-Loop Systems = resonant excitation on the Tune
- Note: Exciter and pickup have additional non-beam related responses!

S S S

Tune Diagnostics Classic BPM based Method

.... how an kick-induced beam oscillation usually looks like (no sync. beating)

14/36

Tune Diagnostics - Detectors Recap: BPM principle

Underlying measurement related to BPM design:

Usual choices:

beam signal

- wall-current, button, shoebox, strip-line pickup $(\rightarrow P. Fork \ lecture)$
- resonant pickups (e.g. Schottky \rightarrow F. Caspers)
- Single charge image density on pickup segment¹:

$$I_{L/R}(t) = \frac{I_{\omega}(t)}{2\pi} \left[2\psi \mp 2\frac{x}{R}\sin(\psi) + \frac{x^2 - y^2}{R^2}\sin(2\psi) + h.o. \right]$$

longitudinal transverse

 real-life signal is usually further convoluted with pickup and acquisition electronics response^{2,3}!

beam signal

- will elaborate a bit more on above equation

¹R. Littauer, *"Beam Instrumentation"*, SLAC Summer School, 1982. (p.902)
²D. McGinnis, *"The Design of Beam Pickup and Kickers"*, BIW'94, 1994
³G. Vismara, *"Signal Processing for Beam Position Monitors"*, CERN-SL-2000-056-BI

>

>

O

Tune Diagnostics Instrumentation Classic Detection Scheme

Classic detection approach: Σ - Δ hybrid (or direct pickup signal sampling)

$$\rightarrow \frac{X}{R} \approx \frac{\Delta}{\Sigma} = \frac{I_L - I_R}{I_L + I_R}$$
 R: pickup half-aperture

- Eliminates most 'common mode' signal (e.g. intensity),
- However ADC needs still to accommodate 'common mode' signals due to:
 - Closed orbit offset
 - 2^{nd} order: intensity bleed-trough intrinsic to any Σ - Δ hybrid

Q

Tune Diagnostics Instrumentation Non-Tune Signal contributions

A little bit in more detail:

$$I_{L/R}(t) = \underbrace{\frac{I_{\omega}(\sigma_s, t)}{2\pi}}_{\text{longitudinal beam signal (PM)}} \cdot \begin{bmatrix} 2\psi \mp 2\frac{x}{R}\sin(\psi) + \frac{x^2 - y^2}{R^2}\sin(2\psi) + h.o. \end{bmatrix}$$

- N.B. multiplication in time-domain \leftrightarrow convolution in frequency domain
- Some important observations:
 - 1. Transverse pickups are also sensitive to modulation of the longitudinal carrier signal
 - 2. For tune measurement important beam-observable is x_{β} :

$$x \rightarrow x_{co} + D \cdot \frac{\Delta p}{p} + x_{\beta} \rightarrow I_{L/R}(t) \sim I_{CM} + \Delta I(x_{beta})$$

- 'Common-mode' signal ${\rm I}_{_{\rm CM}}$ limits dynamic range and ADC resolution
- Example: $R \approx 44 \text{ mm \& nm resolution} \rightarrow \text{required sensitivity } \Delta I/I_{_{CM}} \sim 10^{-8}$
 - $\text{ most BPM systems:} \qquad \Delta I/I_{CM} \sim 10^{-3} \rightarrow \text{ need something different} \\ \text{ with e.g. good Σ-Δ hybrid:} \qquad \Delta I/I_{CM} \sim 10^{-5} \qquad \rightarrow \text{ need something different} \\$

3. Higher Order term 'x²-y²': $I_{L/R}(t)$ sensitive to beam size \rightarrow a.k.a. 'quadrupolar pickup'

- Longitudinal carrier signal changes with shape, arrival time (synchrotron oscillations) and number of circulating bunches:
 - processing chain has to accommodate this through e.g. multiple gain stages
 - optimise for one bandwidth \rightarrow in-/less sensitive if number of bunches change

Tune Diagnostics Instrumentation Direct-Diode-Detection

- Basic principle: AC-coupled peak detector¹
 - intrinsically down samples spectra: ... GHz \rightarrow kHz (independent on filling pattern)
 - thus 'Base-Band-Tune Meter' (aka. BBQ)
 - Base-band operation: very high sensitivity/resolution ADC available
 - Measured resolution estimate: < 10 nm $\rightarrow \epsilon$ blow-up is a non-issue
 - AC-coupling removes common-mode \rightarrow only relative changes play a role
 - capacitance keeps the "memory" of the to be rejected signal
 - no saturation, self-triggered, no gain changes to accommodate single vs. multiple bunches or low vs. high intensity beam
- However: no specific bunch-by-bunch information (unless using gating)

¹M. Gasior, "The principle and first results of betatron tune measurement by direct diode detection", CERN-LHC-Project-Report-853, 2005

Q

2008-05-31

ch,

Steinhagen@CERN.

Ralph.

France,

Dourdan,

ဟ

SO

Diagnostics

Ō

S S S

BBQ Example Spectra CERN-PSB, f_{rev} ≈ 2 MHz

- BBQ \rightarrow fast ADC \rightarrow FPGA based digital signal processing chain, FFTs @ 500 1 kHz!
 - provides real-time Q diagnostics for operation

Reference Spectra Beethoven's 5th, First Five Measures

BBQ Example Spectra – without Excitation LHC Testbeds: CERN-SPS f_{rev} ≈ 43 kHz, LHC Beam

- BBQ system's high sensitivity revealed mains harmonic at RHIC and Tevatron
 - drives beam at tune resonance \rightarrow emittance blow-up, particle loss

- BTF provides also information on collective effects (landau \rightarrow spread distribution):
 - impedance, stability diagram, lattice non-linearities (Q', Q"), etc.

Ø

$$\begin{aligned} z_{det}(t) &= LP \left(z_{input}(t) \cdot z_{exciter}(t) \right) \\ &= LP \left(R \left(f_{e} \right) \cdot \cos \left(2\pi f_{e} - \Delta \varphi(t) \right) \cdot A \sin \left(2\pi f_{e} \right) \right) \end{aligned}$$

- Pro: robust analogue circuit implementation possible
- Con:
 - non-linear control signal for large phase difference $\Delta \phi$
 - Control signal depends on beam response's amplitude R(f_e)

Advanced Phase-Locked-Loop Scheme

- BTF functions do not always look always as pretty as reports suggests or claim – an insider view on the real story:
- BTF and compensation consists of the adjustment of four parameters, preferably with stable beam condition ('chicken-egg' problem)
 - 1st step: verify necessary excitation amplitude and plane mapping (obvious?)
 - 2nd step: verify long sample delay (once per installation, constant)
 - full range BTF and count $\pm \pi$ wrap-around \rightarrow number of delayed samples

Measure $d\phi/df$ slope (~ front-end non-lin. phase and kicker cable length)

What's published in papers and CAS reports:

Two domains of tracking, either slow and very precise (low loop bandwidth) or fast:

- Phase error and non-vanishing amplitude indicates lock
- here: $\Delta Q/\Delta t|_{max} \approx 0.3$ within 300 ms $f_{rev} \approx 43$ kHz

Tune-PLL Tracking Example: CERN-SPS PLL Tune Tracking – precise tracking (Q', Δp/p ≈ 1.85·10⁻⁵)

31/36

Recap: Transverse Beam Dynamics Tune Perturbation Sources II/II – Sextupole Driven

- Feed-down due to systematic closed orbit offset Δx_{co} :
 - horizontal plane:
 - \rightarrow add. quadrupole \rightarrow tune shift ~ Δx_{co}
 - + small dipole kick ~ $(\Delta x_{co})^2$
 - vertical plane:
 - \rightarrow add. skew-quadrupole \rightarrow coupling $\sim \Delta y_{co}$
 - + small dipole kick ~ $(\Delta y_{co})^2$
 - first order: rotates oscillation plane

- Feed-down due to closed orbit + change of sextupolar field:
 - important for superconducting accelerators: large changes of persistent currents (decay & snapback phenomena)
 - also visible while changing (trimming) Q'
 - Higher order effects: space charge, beam-beam, ...

Q

In the presence of coupling (solenoids, skew-quadrupoles):

$$\begin{split} \mathbf{X}^{1} + k(s) \mathbf{X} &= \mathbf{K}(s) \mathbf{Y} \\ \mathbf{Y}^{1} + k(s) \mathbf{Y} &= \mathbf{K}(s) \mathbf{Y} \\ \mathbf{K}(s) \mathbf{X} \\ \text{classic harmonic oscillator, defines unperturbed tunes: } \mathbf{q}_{*} \mathbf{q}_{*} \\ \text{classic harmonic oscillator, defines unperturbed tunes: } \mathbf{q}_{*} \mathbf{q}_{*} \\ \text{- assuming weak coupling, eigenmodes } (\mathbf{Q}_{1}, \mathbf{Q}_{2}) \text{ may be rotated w.r.t. unperturbed tunes } \mathbf{q}_{*} \mathbf{q}_{*} \\ \text{- assuming weak coupling, eigenmodes } (\mathbf{Q}_{1}, \mathbf{Q}_{2}) \text{ may be rotated w.r.t. unperturbed tunes } \mathbf{q}_{*} \mathbf{q}_{*} \\ \mathbf{Q}_{1,2} = \frac{1}{2} \left(q_{x} + q_{y} \pm \sqrt{\Delta^{2} + |C^{-}|^{2}} \right) \\ \mathcal{Q}_{1,2} = \frac{1}{2} \left(q_{x} + q_{y} \pm \sqrt{\Delta^{2} + |C^{-}|^{2}} \right) \\ \mathcal{Q}_{1,2} = \frac{1}{2} \left(q_{x} + q_{y} \pm \sqrt{\Delta^{2} + |C^{-}|^{2}} \right) \\ \mathcal{Q}_{1,2} = \frac{1}{2} \left(q_{x} + q_{y} \pm \sqrt{\Delta^{2} + |C^{-}|^{2}} \right) \\ \mathcal{Q}_{1,2} = \frac{1}{2} \left(q_{x} + q_{y} \pm \sqrt{\Delta^{2} + |C^{-}|^{2}} \right) \\ \mathcal{Q}_{1,2} = \frac{1}{2} \left(q_{x} + q_{y} \pm \sqrt{\Delta^{2} + |C^{-}|^{2}} \right) \\ \mathcal{Q}_{1,2} = \frac{1}{2} \left(q_{x} + q_{y} \pm \sqrt{\Delta^{2} + |C^{-}|^{2}} \right) \\ \mathcal{Q}_{1,2} = \frac{1}{2} \left(q_{x} + q_{y} \pm \sqrt{\Delta^{2} + |C^{-}|^{2}} \right) \\ \mathcal{Q}_{1,2} = \frac{1}{2} \left(q_{x} + q_{y} \pm \sqrt{\Delta^{2} + |C^{-}|^{2}} \right) \\ \mathcal{Q}_{1,2} = \frac{1}{2} \left(q_{x} + q_{y} \pm \sqrt{\Delta^{2} + |C^{-}|^{2}} \right) \\ \mathcal{Q}_{1,2} = \frac{1}{2} \left(q_{x} + q_{y} \pm \sqrt{\Delta^{2} + |C^{-}|^{2}} \right) \\ \mathcal{Q}_{1,2} = \frac{1}{2} \left(q_{x} + q_{y} \pm \sqrt{\Delta^{2} + |C^{-}|^{2}} \right) \\ \mathcal{Q}_{1,2} = \frac{1}{2} \left(q_{x} + q_{y} \pm \sqrt{\Delta^{2} + |C^{-}|^{2}} \right) \\ \mathcal{Q}_{1,2} = \frac{1}{2} \left(q_{x} + q_{y} \pm q_{$$

Q & Q' Diagnostics, CAS Dourdan, France, Ralph. Steinhagen@CERN.ch, 2008-05-31

Possible improvement:

- Optimise tune working point (larger tune-split),
- Vertical orbit stabilisation in lattice sextupoles (Orbit FB → M. Böge)
- Active compensation and correction of coupling
 - ratio between regular and cross-term:
 - A_{1,x}: eigenmode amplitude '1' in vert. plane
 - $A_{1,y}$: eigenmode amplitude '1' in hor. plane

$$r_1 = \frac{A_{1,y}}{A_{1,x}} \wedge r_2 = \frac{A_{2,x}}{A_{2,y}}$$

$$|C^{-}| = |Q_{1} - Q_{2}| \cdot \frac{2\sqrt{r_{1}r_{2}}}{(1 + r_{1}r_{2})} \wedge \Delta = |Q_{1} - Q_{2}| \cdot \frac{(1 - r_{1}r_{2})}{(1 + r_{1}r_{2})}$$

- decouples beam feedback control
 - $q_x, q_y \rightarrow$ quadrupole circuits strength
 - $|C|, \chi \rightarrow$ skew-quadrupole circuits strength

R. Jones e.al., "Towards a Robust Phase Locked Loop Tune Feedback System", DIPAC'05, Lyon, France, 2005

Q

 \Rightarrow

Betatron Coupling Detection Example: CERN-SPS

That's all – questions?

Conclusion

- If interested: some additional advanced topics not covered so far (see Appendix):
 - Classic Tune Frequency Analysis
 - Improving Frequency Resolution of FFT based Spectra
 - Tune Phase-Locked-Loop Locking issues in the presence of:
 - Coupled Bunch Instabilities
 - Synchrotron Side-bands
 - Changing Tune Width (Q' dependence, amplitude detuning, impedance, ...)
 - Feedback on Tune, Chromaticity and Coupling

Additional Slides

Additional Topic I: Improving Frequency Resolution of Fast-Fourier-Transform based Spectra

 Test case: controlled oscillation at a given frequency which is varied within one bin, normalised to sampling frequency

_

1024 turns: perfect sinusoidal oscillation & within one bin varying frequency

 same plot as before but: absolute error, logarithmic scale and considering frequency only within half a bin width (symmetry!)

- ... what about more realistic signals with damping, noise ...?

Tune Diagnostics Classic BPM based Method IV/IV – Damping + Kick Offset + Noise

same as before + 0.1 r.m.s. noise vs. kick amplitude of '1'

 Measurement noise is the limiting the resolution, cubic, barycentre, parabolic and Gaussian interpolation seem to yield similar performance. → Gaussian-fit of central peak gives good results im most cases.

Additional Topic II: Phase-Locked-Loop Locking in the Presence Coupled Bunch Instabilities, Synchrotron Side Bands and Tune Width Dependence

Advanced PLL Lock Issues Coupled Bunch Instabilities

- Coupled bunch effects can hamper look became more pronounced during later MDs
 - possible causes: impedance driven wake fields, e-cloud, beam-beam, ...

Mechanism (impedance):

- Possible remedy:
 - Detector selects and measures only one (/first) representative bunch

Advanced PLL Lock Issues Synchrotron Sidebands: PLL locks on the largest peak

Option I: gain scheduling

initial lock: open bandwidth to cover more than one side band (PLL noise ~ chirp)

• side-bands "cancel out", strongest resonance prevails

once locked: reduce bandwidth for better stability/resolution Option II: larger excitation bandwidth, multiple exciter or broadband excitation(FNAL)

Advanced PLL Lock Issues Tune Width Dependence I/III

Reminder:

- optimal PLL Settings (1/ α ~ PLL bandwidth/tracking speed):

$$D(s) = K_P + K_i \frac{1}{s}$$
 with $K_p = K_0 \frac{\tau}{\alpha} \wedge K_i = K_0 \frac{1}{\alpha}$

- Optimal PLL parameters (tracking speed, etc.) depend beside measurement noise on the effective tune width.
- Intrinsic trade-off:
 - Optimal PI for large $\Delta Q \leftrightarrow$ sensitivity to noise (unstable loop) for small ΔQ
 - Optimal PI for small $\Delta Q \leftrightarrow$ slow tracking speed for large ΔQ
- Can be improved by putting knowledge into the system: "gain scheduling"

Advanced PLL Lock Issues Exploitation: Tune Width Measurement using PLL Side Exciter

 \rightarrow measurable dependence of $\Delta Q \sim Q'$

Q' Diagnostics, CAS Dourdan, France, Ralph. Steinhagen@CERN. ch, 2008-05-31 ంర Ø

Additional Topic III: Feed-Backs on Tune, Coupling and Chromaticity

Q' Diagnostics, CAS Dourdan, France, Ralph. Steinhagen@CERN. ch, 2008-05-31

S S S

Integration of Q/Q' Measurements for Q/Q' Control Full LHC Beam-Based Feedback Control Scheme

LHC FBs: 2158 input devices, 1136 output devices \rightarrow total: ~3300 devices!

rectangular, B=1.0

Hamming, B = 1.37

Von Hann, B = 1.5

$$\omega(n) = 0.5 \cdot \left[1 - \cos\left(\frac{2\pi n}{N-1}\right) \right]$$

Nuttall, B = 2.01

$$\begin{split} & \omega(n) = a_0 - a_1 \cos\left(\frac{2\pi n}{N-1}\right) + a_2 \cos\left(\frac{4\pi n}{N-1}\right) - a_3 \cos\left(\frac{6\pi n}{N-1}\right) \\ & a_0 = 0.35875, \ a_1 = 0.48829, \ a_2 = 0.14128, \ a_3 = 0.01168 \end{split}$$

 $\omega(n) = 0.53836 - 0.46164 \cos\left(\frac{2\pi n}{N-1}\right)$

See wikipedia article http://en.wikipedia.org/wiki/Window_function for details