

Some aspects on:

LHC Global Aperture Measurements

Ralph J. Steinhagen

with input from: R. Jones, S. Redaelli, J. Wenninger and others

see also:

link LHCCWG, Classification and Detection of LHC BPM Errors and Faults, 2007-10-23link MPWG #53, Closed Orbit and Protection, 2005-12-16

- Motivation for aperture scans:
 - Machine Protection : combined failure mode: bump + other fast failure
 - LHC Cleaning System: settings dependence on aperture model assump.
 - BPMs alignment and calibration: detection of spurious offsets
 - Optics verification for regular LHC operation
 - Two applicable methods:
 - Aperture scans: free Betatron-oscillations, controlled emittance blow-up
 - Magnet surveillance: main dipoles (done), CODs, quadrupoles,

- <u>alone</u> are unlikely to cause damage to the machine
 - Expected drift velocities are slow: < 2 σ/s
 - Easily detectable and captured through beam loss monitors
 - independent on whether they are local or global drifts
- However, combined failures are an issue:
 - "local orbit bump" + fast other failure, e.g.:
 - Single turn failure involving injection, extraction or aperture kicker
 - fast magnet field decays
 - reduction of alignment margin at local protection devices
 - TDIs, TCDQs, Collimators etc.
- Local orbit bumps may compromise passive protection properties of absorbers and collimators for machine protection!

Example: Protection against Single Turn Failures

Combined failure: (Pilot) Injection with perfect closed orbit

- TI8/TI2 collimators limits $|x_{\beta}(s)|_{max} < 5 \sigma$, TDI (locally) limits $|x_{\beta}(s)|_{max} < 7 \sigma$
- Perfect matching: beam circulates on closed orbit & $\varepsilon_{TI8/TI2} = \varepsilon_{ring}$
 - $\Delta x, \Delta x'$ optics mismatch: \rightarrow oscillation around x_{co} & filamentation $\varepsilon_{ring} > \varepsilon_{TI8/TI2}$
 - But: $\sigma_{ring} < 7 \sigma$ globally (if proper TDI setup)
 - TDI shadows critical machine aperture
 - "Ring aperture is safe", assuming only single turn (injection) failures.

- TI8/TI2 collimators limits $|x_{\beta}(s)|_{max} < 5 \sigma$, TDI (locally) limits $|x_{\beta}(s)|_{max} < 7 \sigma$
 - TDI does potentially not shadow sensitive equipment
 - → Orbit bumps may compromise function of absorbers for protection if beam is closer to the aperture than to TDI

- Primary collimator (TCP) limits $|x_{\beta}(s)|_{max}$ locally to <5.7 σ , secondary collimator (TCS) at~ 6.7 σ
- To guarantee two stage cleaning efficiency/machine protection:
 - Local: TCP must be >0.7 σ closer than TCS w.r.t. the beam \rightarrow Orbit FB
 - Global: no other object (except TCP) closer to beam than TCS
 - → Orbit bumps may compromise function of collimation if beam is closer to the aperture than to jaws!

- Three main lines of defence against BPM errors and faults:
 - 1 Pre-checks without beam using the in-build calibration unit
 - eliminates open/closed circuits, dead circuits/element candidates
 - 2 Pre-checks with Pilot and Intermediate beams
 - verifies calibration offset (guarantee) and slope (golden orbit)
 - verifies/guarantees proper function of machine protection
 - 3 Continuous data quality monitoring through Orbit Feedback
 - detects spikes, steps and BPMs that are under verge of failing
 - (k-modulation can for a few (insertion) BPMs provide some additional limited cross-checks for BPM misalignments w.r.t. magnetic quadrupole limits. However: no hard limits!)

- Two simple functional tests to check whether BPMs are working. Idea: "Every non-moving position reading indicates a dead BPM".
 - free betatron oscillation with rotating phase
 - non-moving BPM readings \rightarrow faulty BPM
 - tests calibration factor and/or optics
 - 2 aperture scan to checks abs. BPM offsets and insures proper machine protection functionality:
 - Orbit is not a "play-parameter" for operation, except at low intensity. ('Playing' with the orbit will result in quasi-immediate quench at high intensity.)

particle loss

→stop ε blow-up

- Three methods to establish whether the closed orbit is within 6.7σ of the available mechanical resp. dynamic aperture:
- Scan using emittance blow-up: $\sigma(s) = \sqrt{\epsilon \, eta(s)}$
 - Increase beam size in a controlled way while measuring the beam size.
 (e.g. using transverse damper and synchrotron light monitor/IPM)
 - Once particle loss above given threshold:
 - → store last beam size measurement
 - "Is beam size \geq 6.7 σ_0 ?" (σ_0 : beam size at injection)
- Orbit $e_{0} \rightarrow e_{0} \rightarrow e_{0}$
- Yes: \rightarrow mechanical aperture \geq 6.7 $\sigma \rightarrow$ orbit is safe
- No: \rightarrow mechanical aperture $\leq 6.7 \sigma \rightarrow$ orbit is un-safe
 - rework orbit reference (compare with old reference....)

Aperture Measurement using Tune/Aperture Kicker Magnet

- Scan using tune/aperture kicker:
 - likely to create larger beam loss transients (easy BLM detection)
 - indicates aperture location assuming "hitting aperture → losses at downstream quadrupole" dependence
 - filamentation \rightarrow emittance blow-up \rightarrow need to dump and re-fill beam
 - tune kicker provides only 1 σ oscillations @ 450 GeV (\rightleftharpoons 3 kV)
 - aperture kicker:
 - intrinsically dangerous/un-safe
 - not and ad-hoc instrument

Scan using two COD magnets (currents: $I_1 \& I_2$) with $\pi/2$ phase advance:

- Scan (assuming global aperture of ~ 7.5σ):
 - $\phi = 0 \rightarrow 2\pi$ requires ~25 seconds @7 σ , per transverse angle
 - propose to measure at four transverse angles: 0°, 45°, 90°, 125°
- Increase amplitude (COD currents) till orbit shift $\approx 6.7\sigma$
- Loss does not exceed predefined BLM threshold if COD settings@ 6.7σ:
 - Yes: \rightarrow mechanical aperture $\geq 6.7 \text{ s} \rightarrow$ orbit is safe
 - No: \rightarrow mechanical aperture $\leq 6.7 \text{ s} \rightarrow$ orbit is un-safe
- additional feature: compare measured with reference BPM step response ($x_{co} = 0.3\sigma$)
 - \rightarrow rough optics check (phase advance and beta-functions)

Intermediate Summary:

Controlled e-blow-up/kicker scan:

- may check both planes at the same time
- relatively fast measurement
- reliability/robustness of beam size measurement/blow-up is an issue
- no information on injection optics
- Tests rather dynamic than mechanical aperture if a_{dyn} < a_{mech}
- Destructive measurement
 - beam has to be dumped after scan
 - cannot be used for collimator setup
 - increased beam loss during extraction
 - All three methods:
 - Determine the available aperture
 - should be performed with low-intensity beams
 - need time and exclusive control of the machine
- in order to minimise the need for too frequent aperture scans: → perform above checks only when exceed given window

COD Betatron oscillation scan:

- non-destructive measurement
 - (could be done to check during each injection)
- rough information on injection optic
- Independent information on planes
- checks only one plane at a time
- What to do if on COD is down?
 - spares: longer measurement
- requires \sim 30 s for a scan at 7σ
- Required:
 - inhibit injection during scan
 - COD setting reset after scan

- Propose to perform two procedural steps for each fill:
 - A: Initial check whether Orbit is safe:
 - 1. After Pilot injection: scan aperture <u>with retracted collimators</u> till either the assumed mechanical aperture is reached or beam loss is triggered
 - eliminates "dead", calibration, wrong gain mode BPMs for 'HIGH-SENSITIVITY'
 - estimates BPM offsets <u>and</u> tests safe aperture model with an accuracy of better than one r.m.s beam width.
 - verification of correct injection optics (orbit response)
 - 2. After intermediate beam injection: <u>collimators in nominal positions</u> w.r.t. above measured global aperture and scan till a pre-defined beam loss (pattern) is reached
 - eliminates "dead", calibration, wrong gain mode BPMs for 'LOW-SENSITIVITY'
 - verifies that primary collimators/absorbers are set correctly → Partial assurance that we setup the system properly....
 - Potential bump scans to determine location of aperture
 - 3. save "safe BPM reference" current settings $\rightarrow x_{ref}$ = "SAFE SETTING"

B: Continuous Monitoring:

- if ($|\mathbf{x}_{\text{meas.}} \mathbf{x}_{\text{ref}}| < \Delta \mathbf{x}_{\text{tol}}$) {...}
- FALSE: potential orbit bump detected
- TRUE: Orbit is safe

ves

no

Indicators whether Aperture Scan is required I/II Magnet Current Surveillance

- Proposed Procedure:
 - A: Initial check whether Orbit is safe:
 - aperture scan (ε blow-up, betatron-oscillation)
 - Potential bump scans to determine location of aperture
 - Save "safe COD reference" current settings \rightarrow I_{ref}(...) = "SAFE SETTING"
 - B: Each cycle:
 - Compare with actual current reference I_{meas}(..):

if $(|I_{meas}(..) - I_{ref}(...)| < \Delta I_{tolerances})$ {...}

- FALSE: Orbit may contain potential bumps \rightarrow State A
- TRUE: Orbit can be considered to be safe \rightarrow State B

yes

no

Summary

- Current Surveillance:
 Pro's
- Can be used to check before first injection
- Can run in parallel to orbit FB operation

Con's

- Less sensitive to complicated orbit bumps
- No precise & simple ' $\Delta I \rightarrow \Delta x$ ' transfer function available
- depends on machine optic, energy
- CODs create not only bumps but compensate, ground motion, decay & snap-back, multipole field errors, ..

- Aperture scans + BPM Surveillance:
 Pro's:
- Easy to check with circulating beam
- Less dependent on machine optics
- Sensitive to most orbit manipulations
 Con's:
- erroneous BPMs
- No information before injection
- affected by systematic BPM uncertainties
- Potential cross-talk with orbit feedback

N.B. Tolerance levels ("SAFE SETTINGS") should include margin for:

- Compensation of closed orbit and optics uncertainties = "natural effects"
- BPM system uncertainties
- OFB operation (crossing/separation bump, injection/extraction steering, ...)

additional slides

LHC Aperture Measurements, Ralph.Steinhagen@CERN.ch, 2008-02-27

LPR501 specification¹:

– nom.: (Δp/p) _{max} ≈ 10 ⁻⁴	0.25 σ (MD: max \approx 3.7 σ)
− $b_2 + b_3 \cdot \Delta x$ decay: $(\Delta \beta / \beta)_{3\sigma} \approx 2.5\%$	0.03 σ
Moon/sun tides ² ($\Delta p/p \le 5.0 \cdot 10^{-5}$)	0.14 σ
Main Bends, random $b_1 \approx 0.75 \text{ units}^{34}$ (dipole kick)	0.11 σ
Random ground motion ⁵ (10 hours)	~0.3 – 0.5 0
Systematic ground motion drifts:	~?? o
MCB hysteresis ⁶	0.01 σ
MCB ±8V/±60A PC stability ⁷ (16bit ADC)	0.10 σ
Total (abs):	~ 0.9 - 1.1 σ (max: 4.6 σ)

\rightarrow May become an issue for (close to) nominal operation

- 1: M. Giovannozzi: FQWG Meeting on 8th of March 2005
- 2: J. Wenninger: "Observation of Radial Ring Deformation using Closed Orbits at LEP"
- 3: M. Haverkamp, "Decay and Snapback in Superconducting Accelerator Magnets", CERN-THESIS-2003-030
- 4: FQWG-Homepage: http://fqwg.web.cern.ch/fqwg/
- 5: RST: "Analysis of Ground Motion at SPS and LEP, implications for the LHC", AB note to be published
- 6: W. Venturini: "Hysteresis measurements of a twin aperture MCB orbit corrector", 19th October 2005
- 7: Q. King, L. Ceccone: private communications

- Mechanical aperture: $N_a = n \sigma$ (e.g. n=7.5)
- Deductions:
 - Collimation: 6.7σ
 - Momentum correction
 - Known uncertainties: 1.1 σ
 - Unknown: ~?? σ
 - safe window for dynamic closed orbit modifications: ~ "- 0.3 σ "???
 - Evident: aperture check required!
- Possible MCB tolerance levels:
 - ... 1 σ orbit excursion using CODs one needs e.g.:
 - All CODs with a r.m.s. kick of ~ 1.4 μ rad \leftrightarrow
 - 3COD bump: 2x ~12 (-0.1) µrad ↔
 - → Vicious bump: smaller strengths and larger local displacement possible!
 - ... 1 σ orbit excursion through dispersion one needs ($\Delta p/p \approx 4.10^{-4}$):
 - Coherent shift of all MCBH CODs ≈ 0.5 A@450 GeV
- \rightarrow MCB current change of 0.5 A is likely to cause a orbit bump/shift of 1 σ .
- LHC Aperture Measurements, Ralph.Steinhagen@CERN.ch, 2008-02-27

≈ 0.07 A@450 GeV

≈ 0.5 (0.05)A@450 GeV

- Scheme may be extended through the ramp till squeeze:
 - Similar effects as in injection that perturb the orbit dynamically:
 - Snapback (= inverse of Decay), ground motion,...
 - But: effect of each dipole (deflections) depends on energy:
 - Interlock window and its centre has to be scaled with energy:
 - − 0.5 A/ σ_{orbit} @450 Gev → 7.8 A/ σ_{orbit} @7 TeV
 - Continuation through β^* -Squeeze seems to be tricky:
 - CODs do not compensate only ground motion/decay
 - Squeeze induced orbit shifts due to systematic (mis-)alignment of the orbit inside the insertion quadrupoles. If not corrected:
 - Squeeze induced orbit drift up to 30 mm \leftrightarrow 100 σ !

→ No simple window to subtract squeeze induced COD changes from those creating bumps.

 bunch length σ_b, intensity n_b
 (σ_f: filter time constant) and integrator temperature changes ΔT, filling pattern, ...:

$$\Delta x_{error} \sim \frac{\sigma_{eff}^{3}}{n_{b}^{1.5}} + \approx 15 - 20 \frac{\mu m}{o_{C}} \cdot \Delta T$$

with $\sigma_{eff} \approx \sqrt{(\sigma_{b}^{2} + \sigma_{f}^{2})}$

