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Introduction to 
Feedback Controllers

Ralph J. Steinhagen
Accelerator & Beams Department, CERN

Schottky, Tune and Chromaticity Diagnostic & Feedbacks
CARE, Chamonix, December 11-13th , 2007
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Overview

Optimal Controller Design

– Space Domain: MIMO inversion problem

• orthogonality of parameters, blind parameters, singularities, ...

– Time Domain: Youla (example), Kucera

Non-linear Systems

– effect of delays, rate-limiter, sampling and their compensation

Multiple FB Loops and Coupling Compensation
→ Presentation on LHC feedback architecture

mailto:Ralph.Steinhagen@CERN.ch
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Control Paradigms I/III

Feed-Forward: (FF) - “set and forget” 
– Steer parameter using precise process model and disturbance prediction

Feedback: (FB) - “set, verify, re-adjust, verify, ...”
– Steering using rough process model and measurement of parameter
– Two types: within-cycle or cycle-to-cycle

Feedback:
Δx → E

Process:
E → P

Energy, Orbit, 
Q, Q', c

-
 etc.Σ

Reference

Monitor:
P → P'

P
P'

Δx Σ

actual disturbance

+

-

+ +
Σ

+

Feed-Forward:
M → E

Model

+

Σ

predicted disturbance

+ +

From the steering point of view: → control schemes are similar

mailto:Ralph.Steinhagen@CERN.ch
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Control Paradigms II/III

Uncertainties and scale error of beam response function affects convergence 
speed (= feedback bandwidth) rather than achievable stability

Choice of feedback vs. feed-forward

– mainly depends on available robust beam parameter measurements

 x s =Ri  s⋅i   x  s =Ri s ⋅ss1 scale ⋅i

Machine imperfections (beta-beat, hysteresis....), calibration errors and offsets 
can be translated into a steady-state ε

ss 
and scale error ε

scale
:

time

no
rm

. p
ar

am
et

er Reference = 1

1-ε

actual parameter

Feed-Forward:

time
no

rm
. 

pa
ra

m
et

er Reference = 1

1-ε

actual parameter

Integral feedback:

error signal Δ =
integral feedback signal 

1rst 2nd nth...

mailto:Ralph.Steinhagen@CERN.ch
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Control Paradigms III/III

Good understanding of the beam measurement principle, corrector elements 
and beam physics is essential for the design of a robust feedback system!

– instrument systematics and errors

– overview of the final/whole feedback loop and requirements

Two observations concerning the design of feedbacks:

– common: optimise instrument's response before “closing the loop”

• often: multiple low-pass filters to reduce measurement noise 

– feedback approach: optimise closed loop response = minimise phase lags

• most FB systems have anyway low-pass characteristics            
→ LP filters just increase phase lag and are thus (often) unnecessary

• measurement does not need to be calibrated accurately (integrators)

→ 'KISS' principle = keep it simple – keep it safe

mailto:Ralph.Steinhagen@CERN.ch
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Multiple-Input-Multiple-Output (MIMO) Process Control

'Divide and Conquer'  feedback controller design approach:

1 Compute steady-state corrector settings          
based on measured parameter shift Dx=(x

1
,..., x

n
) that will move     

the beam to its reference position for t→∞.

2 Compute a         that will enhance the transition  

3 Feed-forward:  anticipate and add deflections      to compensate
changes of well known and properly described sources

(N.B. here G(s) contains the process and monitor response function)

ss=1, ,n

 t   t=0ss

space
domain

Σ Dx → d
ss

 ff

d(t=0) → d
ss

Σreference
actual beam 
parameter

“classic” parameter
correction

“classic”
feedback controller

Feedback Controller

feedback-path = measured beam parameter

-

+
+ +

ff estimate1

external input
(trigger, control parameter, Lumi-
Feedback etc.)

G(s)
machine
response

time
domain

D(s)

mailto:Ralph.Steinhagen@CERN.ch
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Space- & Time Domain vs. Full MIMO only design

'Space domain' corresponds to a “traditional” parameter control

– numerous strategies/algorithms available: SVD, MICADO/SIMPLEX, ...

– easy cross-check with slow feedback control (aka. “measure & correct”)

easier/possible to compensate time-variable and non-linear processes

robust/easier to adjust in case of FB element failures/errors

enables staged commissioning or partial operation of FBs

– from simple to complex ( ↔ “operational learning-process”)

– (re-)commissioning has to/will/can be done my non-FB experts

Alternative: MIMO only approach (using Youla, Kucera, ...)

– most real-world, non-linear and/or time-varying system cannot be inverted

– mixes beam-physics (     ) with accelerator control aspects (     )

– employment guarantee: FB expert “mandatory” for follow-up 
modifications, tuning and operation of the feedback loops

mailto:Ralph.Steinhagen@CERN.ch
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Space-Domain: No “black feedback magic”

For a steady-state system, effects on orbit, Energy, Tune, Q' and C- can 
essentially be cast into matrices:

– similar equations can be established for other beam parameters:

• LHC:

– matrices are beam observables and can be measured with beam!

Task in Space domain – assuming steady-state errors:

– beam parameter control consists essentially in inverting these matrices

Some potential complications:
– 'Singularities' = over/under-constraint matrices 

= “more corrector circuits than beam observables” 
– noise, element failures, spurious measurement offsets, calibrations, ...

→ “The world goes SVD....” 

x  t =R⋅ ss with Rij=
i  j

2 sin Q
⋅cos ij−Q

matrix multiplication

RQ∈ℝ
2×16 RQ'∈ℝ

2×32 RC−∈ℝ
2×10 /12Rorbit∈ℝ

1056×530

∥xref−xactual∥2=∥R⋅ss∥2  ss= R
−1x

mailto:Ralph.Steinhagen@CERN.ch
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Space-Domain:
Singular Value Decomposition (SVD) on a slide

Linear algebra theorem*:

U V=

T

xR xl

response matrix BPM eigenvectors eigenvalues COD eigenvectors

U T U=1
=diag 1 , .. ,n 
12n

R∈ℝm×n V T V=V V T=1

n x cor. circuits

m x 
observ-
ables

iui=R⋅v i
iv i=R

T⋅ui

eigen-vector relation:

⇔

though decomposition is numerically more complex final correction is a 
simple vector-matrix multiplication:

numerical robust, minimises parameter deviations Δx and circuit strengths δ

Easy removal of singularities, (nearly) singular eigen-solutions have l
i
~0

to remove those solution: if l
i 
≈ 0 → '1/l

i 
:= 0'

discarded eigenvalues corresponds to solution pattern unaffected by the FB

*G. Golub and C. Reinsch, “Handbook for automatic computation II, Linear Algebra”, Springer, NY, 1971

ss= R
−1⋅x with R−1=V⋅−1⋅U T ⇔ ss=∑

i=0

n ai
i
v i with ai=ui

Tx

T

mailto:Ralph.Steinhagen@CERN.ch
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Space-Domain:
SVD example: LHC eigenvalue spectrum

Eigenvalue spectra for vertical LHC response matrix using all BPMs and CODs:

dominant eigenvalues near
singular
solutions

condition number ~ 106

→ indicator of matrix condition 
→ loss of 12 bits during the inversion process
→ use of 64 bit floats is mandatory

these correspond 
to orbit bumps 
@ the IPs

mailto:Ralph.Steinhagen@CERN.ch
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Space-Domain:
Example SVD based orbit correction

Orbit attenuation Sensitivity to BPM noise

Number of for the inversion used eigenvalues steers accuracy versus 
robustness of correction algorithm

Likewise applies for Tune, Chromaticity and Coupling correction

– However: Only two out of 'n' eigenvalues are non-singular

mailto:Ralph.Steinhagen@CERN.ch
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Time-Domain: Optimal Controller Design 
Youla's affine parameterisation I/II

Controller design often regarded as specialists' topic only - wrong!

Youla showed1 that all stable closed loop controllers D(s) can be written as:

Example: first order system

 
Using for example the following ansatz:

   
– F

Q
(s) models the desired closed-loop response

– Gi(s) being the pseudo-inverse of the nominal plant G(s)
(1)+(2)+(3) yields the following PI controller:

D  s=
Q s 

1−Q  s G s 
(1)

G s =
K 0

 s1
 (2)

(3)

D  s=K PK i
1
s

with K p=K 0


∧ K i=K 0

1


Q s =FQ  sG
i s =

1
 s1

⋅
 s1

K 0
T 0 s =

1
 s1

with     being the circuit time constant

1D. C. Youla et al., “Modern Wiener-Hopf Design of Optimal Controllers”,
IEEE Trans. on Automatic Control,1976, vol. 21-1,pp. 3-13 & 319-338

mailto:Ralph.Steinhagen@CERN.ch
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Time-Domain: Optimal Controller Design 
Youla's affine parameterisation II/II

Optimal control [or design] ...

“... deals with the problem of finding a control law for a given system such 
that a given optimality criterion is achieved. A control problem includes a 
cost functional that is a function of state and control variables.“

– Common criteria: closed loop stability, minimum bandwidth, minimisation 
of action integral, power dissipation, ...

classic closed loop:

Using Youla's method: “design closed loop in a open loop style”:

– effective closed loop TF:

– Response and optimality can directly be deduced by construction of F
Q
(s)

– usually: keep feedback controller simple and require that the desired 
closed-loop transfer function F

Q
(s) is e.g. of first or second order

D  s=
Q s 

1−Q  s G s 

T 0 s  = Q  sG  s = FQ  s 

T 0 s =
D  sG  s
1D s G s 

“this tells me???”

mailto:Ralph.Steinhagen@CERN.ch
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Time-Domain: Optimal Controller Design 
Example: PLL Closed Loop Controller

The PLL loop dynamics and its design split into two parts:  

– PLL low-pass filter: 
→ 

– Beam response:

• first order: K
0 
= const.

  

– Youla's method: optimal control → classic PI controller

• α is the (only) “free” parameter

GPLL s =
K 0

 s1
with = 1

f bw

K
0
: depends 

on the slope

D  s=K PK i
1
s

with K p=K 0


∧ K i=K 0

1


=
1

f BW

D  s=
Q s 

1−Q  s G s 

mailto:Ralph.Steinhagen@CERN.ch
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Time-Domain: Optimal Controller Design 
Example: PLL Closed Loop Controller - Bandwidth

α > τ...∞ facilitates the trade-off between speed and robustness

– operator has to deal with one parameter →  enables simple adaptive gain-
scheduling based on the operational scenario!

di
st

ur
ba

nc
e 

re
je

ct
io

n 
S

0(
s)

T
0(

s)

fastermore robust/precise

D  s=
Q s 

1−Q  s G s 

mailto:Ralph.Steinhagen@CERN.ch
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Example: LHC PLL Tune Tracking at the SPS
Real-Beam Data

Phase error and non-vanishing amplitude indicate lock during ramp

ΔQ/Δt|
max

 ≈ 0.3/s ~ two orders of mag. faster than required for LHC

tune trace
phase response
amplitude response

f
rev

 ≈ 43 kHz

details:
→ Andrea's 
presentation

mailto:Ralph.Steinhagen@CERN.ch
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Time-Domain: Non-Linearities I/IV

Two common non-linear effects in accelerators:

Delays: computation, data transmission, dead-time, etc.

Rate-Limiter: limited slew rate of corrector circuits (due to voltage limitations)

– e.g. LHC: ±60A converter: ΔI/Δt|
max

 < 0.5 A/s

slow perturbation: perfect tracking fast perturbation: saw-tooth

mailto:Ralph.Steinhagen@CERN.ch
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Time-Domain: Non-Linearities II/IV

Rate-limiter in a nut-shell:

– additional time-delay Δτ that depends on the signal/noise amplitude

– (secondary: introduces harmonic distortions)

mailto:Ralph.Steinhagen@CERN.ch
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Time-Domain: Non-Linearities III/IV

Open-loop circuit bandwidth depends on the excitation amplitude:

– + non-linear phase once rate-limiter is in action...

Consider ~16μm@1Hz as effective 
bandwidth @ 7TeV

~100μm@20mHz

~1 μm@10Hz

ΔI=0.1A ↔ Δx≈16 μm@β=180m

mailto:Ralph.Steinhagen@CERN.ch
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Time Domain: Non-Linearities IV/IV
Unstable Zeros/non-linearities and delays

... cannot a priori be compensated. 

– however, their deteriorating effect on the loop response can 
be mitigated by taking them into account during the controller design.

Example: process can be split into stable and instable 'zeros'/components

Using the modified ansatz (F
Q
(s): desired closed-loop transfer function):

yields the following closed loop transfer function

– Controller design F
Q
(s) carried out as for the linear plant

– Yields known classic predictor schemes:

• delay → Smith Predictor

• rate-limit → Anti-Windup Predictor

D  s=
Q s 

1−Q  s G s 

G s =
A0 s  Au s 

B s 
=G0 s ⋅GNL s e.g. G s =G0  s ⋅e

− s

λ: delay

Q s =FQ s ⋅G
i  s=FQ  s⋅G0

−1 s 

 T s  =Q  sG  s =F Q s ⋅G NLs  =
here:

FQ  s⋅e
− s

mailto:Ralph.Steinhagen@CERN.ch
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Time Domain:
Example: LHC Feedbacks & Delays + Rate-limiter

If G(s) contains e.g. delay λ & non-linearities G
NL

(s)

 
with      the power converter time constant and

yields Smith-Predictor and Anti-Windup paths:

G s = e− s

 s1
⋅G NL s

Gi  s=
 s1
1

T  s =F Q s ⋅e
−s G NL s

D
PID

(s) gains are independent on non-linearities and delays!!

D  s=
Q s 

1−Q  s G s 

mailto:Ralph.Steinhagen@CERN.ch
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Time Domain:
Example: LHC Feedbacks Controller – CODE Snippet

Final implementation does not have 
to be complicated, 
Alternative C-style representation:

– Colour coding:

• classic linear controller

• Anti-Windup branch

• Smith-Predictor branch

Total number of lines: ~ 50

– + a few lines for:
• settings management
• scheduling/automatisation
• exception handling
• ...

mailto:Ralph.Steinhagen@CERN.ch
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Motivation for Delay and Rate-Limiter Compensation
Example: LHC orbit (Q,Q',C-, ...) feedback control

without delay compensation

rate-limted 
process reference

current response
ramping rate
integral signal

with full delay and windup
compensator scheme:

mailto:Ralph.Steinhagen@CERN.ch
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char. freq.: 0.5Hz
sampling: 10 Hz

time domain:

~40%

Loop Bandwidth versus Sampling frequency I/II
Classic argument: Analogue vs. Digital Design

Among many arguments:
– Pro analogue:most process to be controlled are analogue
– Pro digital: most controller are nowadays digital

• “Con-example”: digital only controller design (inter-sample response)

  

  

Mitigation: iterative design approach between analogue and digital domain

– sampling of simulation needs to be significantly larger than FB sampling
– can be time consuming (especially for large MIMO systems)
– beware of numerical instabilities and artefacts

perfect digital response
but ~40% “analog” overshoot

mailto:Ralph.Steinhagen@CERN.ch
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Loop Bandwidth versus Sampling frequency I/II
Example: LHC orbit/Q/Q'/... feedback design

... 10Hz sampling to achieve a closed loop 1Hz bandwidth:

– ... a theoretic limit assuming a perfect system (no noise, model errors)!

– common sense/advise: f
s
 > 25 ...40 x desired closed-loop bandwidth f

BW

16 μm reference @7TeV, α=0.2:
50 Hz, 25 Hz, 10 Hz, 5 Hz

mixed analogue/digital simulation (LHC orbit FB)
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Summary

Feedbacks are only as good as the measurements they are based upon!

– Systematic and thorough analysis of involved beam instrumentation and 
corrector circuits is essential!

Shown how large MIMO systems and their control can be decomposed into:
'Space-' (classic parameter correction, usually SVD based and 'Time- 
Domain'.

Youla's affine parameterisation facilitates optimal adaptive non-linear control 
– enables simple gain-scheduling based on operational scenario

Beware of sampling!
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Optics and Calibration Uncertainties

Imperfect optic and calibration error can deteriorate the convergence speed 
on the level of the SVD based correction:

Example: 2-dim orbit error surface projection

perfect optic →   1 iteration
20% beta-beat → ~2 iterations
20% calibration error → ~7 iterations
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Optimal Controller Design 
Youla's affine parameterisation - 2nd Order Example

2nd Example: classic 2nd order process:

Using standard ansatz:

yields classic PID controller (optimal gains):

– further simplification: require critical damping →  ζ
cl
:=1

• ω
cl
 ~ 'open loop bandwidth' is the remaining free parameter

G s =
K 00

2

s220 s0
2

Q s =FQ s ⋅G
i  s=

cl
2

s22clcl scl
2
⋅Gi  s

K p =
4cl00cl−0

2

4K0cl
2

K i =
0
2
cl

2K 0cl

K d =
42cl

2
−400cl0

2

8K0cl
3
cl

d =
1

2clcl

D  s = K pK i⋅
1
s
K d⋅

s
d s1

K
0
: open loop gain, ω

0
: characteristic frequency

ζ
0
:  attenuation

with:

D  s=
Q s 

1−Q  s G s 
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Nominal Feedback Response T
0

Full LHC orbit simulation @1KHz sampling, (BPM sampling: 25Hz)

reference amplitude @7TeV:
  0.2 μm
   16 μm (working point)
 160 μm
800  μm
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Nominal Feedback Disturbance Rejection S
d0

Full LHC orbit simulation @1KHz sampling, (BPM sampling: 25Hz)

reference amplitude @7TeV:
  0.2 μm
   16 μm (working point)
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