

Schottky, Tune and Chromaticity Diagnostic & Feedbacks CARE, Chamonix, December 11-13th , 2007

Introduction to Feedback Controllers

- Optimal Controller Design
 - Space Domain: MIMO inversion problem
 - orthogonality of parameters, blind parameters, singularities, ...
 - Time Domain: Youla (example), Kucera
 - Non-linear Systems
 - effect of delays, rate-limiter, sampling and their compensation
- Multiple FB Loops and Coupling Compensation
 - \rightarrow Presentation on LHC feedback architecture

Control Paradigms I/III

- Feed-Forward: (FF) "set and forget"
 - Steer parameter using precise process model and disturbance prediction
- Feedback: (FB) "set, verify, re-adjust, verify, ..."
 - Steering using <u>rough</u> process model and measurement of parameter
 - Two types: within-cycle or cycle-to-cycle

From the steering point of view: \rightarrow control schemes are similar

 Machine imperfections (beta-beat, hysteresis....), calibration errors and offsets can be translated into a steady-state ε_{ss} and scale error ε_{scale}:

 $\Delta x(s) = R_i(s) \cdot \delta_i \rightarrow \Delta x(s) = R_i(s) \cdot (\epsilon_{ss} + (1 + \epsilon_{scale}) \cdot \delta_i)$

- Uncertainties and scale error of beam response function affects convergence speed (= feedback bandwidth) rather than achievable stability
- Choice of feedback vs. feed-forward
 - mainly depends on available robust beam parameter measurements

- Good understanding of the beam measurement principle, corrector elements and beam physics is essential for the design of a robust feedback system!
 - instrument systematics and errors
 - overview of the final/whole feedback loop and requirements
 - Two observations concerning the design of feedbacks:
 - common: optimise instrument's response before "closing the loop"
 - often: multiple low-pass filters to reduce measurement noise
 - feedback approach: optimise closed loop response = minimise phase lags
 - most FB systems have anyway low-pass characteristics \rightarrow LP filters just increase phase lag and are thus (often) unnecessary
 - measurement does not need to be calibrated accurately (integrators)
 - \rightarrow 'KISS' principle = keep it simple keep it safe

space

domain

time

domain

- Divide and Conquer' feedback controller design approach:
 - 1 Compute steady-state corrector settings $\vec{\delta}_{ss} = (\delta_1, ..., \delta_n)$ based on measured parameter shift $\Delta x = (x_1, ..., x_n)$ that will move the beam to its reference position for t $\rightarrow \infty$.
 - 2 Compute a $\vec{\delta}(t)$ that will enhance the transition $\vec{\delta}(t=0) \rightarrow \vec{\delta}_{ss}$
 - 3 Feed-forward: anticipate and add deflections $\vec{\delta}_{ff}$ to compensate changes of well known and properly described sources

(N.B. here G(s) contains the process and monitor response function)

- Space domain' corresponds to a "traditional" parameter control
 - numerous strategies/algorithms available: SVD, MICADO/SIMPLEX, ...
 - easy cross-check with slow feedback control (aka. "measure & correct")
- easier/possible to compensate time-variable and non-linear processes
- robust/easier to adjust in case of FB element failures/errors
- enables staged commissioning or partial operation of FBs
 - from simple to complex (\leftrightarrow "operational learning-process")
 - (re-)commissioning has to/will/can be done my non-FB experts

- Alternative: MIMO only approach (using Youla, Kucera, ...)
 - most real-world, non-linear and/or time-varying system cannot be inverted
 - mixes beam-physics (^(C)) with accelerator control aspects (^(C))
 - employment guarantee: FB expert "mandatory" for follow-up modifications, tuning and operation of the feedback loops

 For a steady-state system, effects on orbit, Energy, Tune, Q' and C⁻ can essentially be cast into matrices:

$$\Delta \vec{x}(t) = \underline{R} \cdot \vec{\delta}_{ss}$$
 with $R_{ij} = \frac{\sqrt{\beta_i \beta_j}}{2\sin(\pi Q)} \cdot \cos(\Delta \mu_{ij} - \pi Q)$

matrix multiplication

- similar equations can be established for other beam parameters:
 - LHC: $\underline{R}_{orbit} \in \mathbb{R}^{1056 \times 530}$ $\underline{R}_{Q} \in \mathbb{R}^{2 \times 16}$ $\underline{R}_{Q'} \in \mathbb{R}^{2 \times 32}$ $\underline{R}_{C^{-}} \in \mathbb{R}^{2 \times 10/12}$
- matrices are beam observables and can be measured with beam!
- Task in Space domain assuming steady-state errors:
 - beam parameter control consists essentially in inverting these matrices

$$\left\|\vec{x}_{ref} - \vec{x}_{actual}\right\|_2 = \left\|\underline{R} \cdot \vec{\delta}_{ss}\right\|_2 < \epsilon \rightarrow \vec{\delta}_{ss} = \tilde{R}^{-1} \Delta \vec{x}$$

- Some potential complications:
 - 'Singularities' = over/under-constraint matrices
 - = "more corrector circuits than beam observables"
 - noise, element failures, spurious measurement offsets, calibrations, ...
 - \rightarrow "The world goes SVD...."

Linear algebra theorem*:

 though decomposition is numerically more complex final correction is a simple vector-matrix multiplication:

$$\vec{\delta}_{ss} = \tilde{R}^{-1} \cdot \Delta \vec{x} \text{ with } \tilde{R}^{-1} = \underline{V} \cdot \underline{\lambda}^{-1} \cdot \underline{U}^T \iff \vec{\delta}_{ss} = \sum_{i=0}^n \frac{a_i}{\lambda_i} \vec{v}_i \text{ with } a_i = \vec{u}_i^T \Delta \vec{x}$$

- numerical robust, minimises parameter deviations $\Delta x \text{ and } circuit$ strengths δ
- Easy removal of singularities, (nearly) singular eigen-solutions have $\lambda_i \sim 0$
- to remove those solution: if $\lambda_i \approx 0 \rightarrow 1/\lambda_i := 0'$
- discarded eigenvalues corresponds to solution pattern unaffected by the FB

Eigenvalue spectra for vertical LHC response matrix using all BPMs and CODs:

- Number of for the inversion used eigenvalues steers accuracy versus robustness of correction algorithm
- Likewise applies for Tune, Chromaticity and Coupling correction
 - However: Only two out of '*n*' eigenvalues are non-singular

, Ralph.Steinhagen@CERN.ch, 2007-12-12

Introduction to Feedback Controllers, Chamonix

- Controller design often regarded as specialists' topic only wrong!
- Youla showed¹ that all stable closed loop controllers D(s) can be written as:

$$D(s) = \frac{Q(s)}{1 - Q(s)G(s)} \tag{1}$$

Example: first order system

 $G(s) = \frac{K_0}{\tau s + 1} \quad \text{with } \tau \text{ being the circuit time constant}$ (2)

Using for example the following ansatz:

$$Q(s) = F_Q(s)G^i(s) = \frac{1}{\alpha s + 1} \cdot \frac{\tau s + 1}{K_0}$$
(3)
E (s) models the desired closed loop response $\rightarrow T_{i}(s) = \frac{1}{1}$

- $-F_{Q}(s)$ models the desired closed-loop response $\rightarrow I_{0}(s) = \frac{1}{\alpha s + 1}$
- $G^{i}(s)$ being the pseudo-inverse of the nominal plant G(s)
- (1)+(2)+(3) yields the following PI controller:

$$D(s) = K_P + K_i \frac{1}{s}$$
 with $K_p = K_0 \frac{\tau}{\alpha} \wedge K_i = K_0 \frac{1}{\alpha}$

¹D. C. Youla et al., *"Modern Wiener-Hopf Design of Optimal Controllers"*, IEEE Trans. on Automatic Control,1976, vol. 21-1,pp. 3-13 & 319-338

Optimal control [or design] ...

- "... deals with the problem of finding a control law for a given system such that a given optimality criterion is achieved. A control problem includes a cost functional that is a function of state and control variables."
- Common criteria: closed loop stability, minimum bandwidth, minimisation of action integral, power dissipation, ...

classic closed loop:
$$T_0(s) = \frac{D(s)G(s)}{1 + D(s)G(s)}$$
 \longrightarrow "this tells me???"

- Using Youla's method: "design closed loop in a open loop style":
 - effective closed loop TF: $T_0(s) = Q(s)G(s) = F_Q(s)$
 - Response and optimality can directly be deduced by construction of $F_{q}(s)$
 - usually: keep feedback controller simple and require that the desired closed-loop transfer function $F_o(s)$ is e.g. of first or second order

The PLL loop dynamics and its design split into two parts:

- Youla's method: optimal control \rightarrow classic PI controller
 - α is the (only) "free" parameter

$$D(s) = K_P + K_i \frac{1}{s}$$
 with $K_p = K_0 \frac{\tau}{\alpha} \wedge K_i = K_0 \frac{1}{\alpha}$

 $\frac{Q(s)}{-Q(s)G(s)}$

D(s) = -

• $\alpha > \tau... \sim$ facilitates the trade-off between speed and robustness D(s) =

- operator has to deal with one parameter \rightarrow enables simple adaptive gain-scheduling based on the operational scenario!

Example: LHC PLL Tune Tracking at the SPS Real-Beam Data

Two common non-linear effects in accelerators:

- Delays: computation, data transmission, dead-time, etc.
- Rate-Limiter: limited slew rate of corrector circuits (due to voltage limitations)
 - e.g. LHC: ±60A converter: $\Delta I/\Delta t|_{max} < 0.5$ A/s

- Rate-limiter in a nut-shell:
 - additional time-delay $\Delta \tau$ that depends on the signal/noise amplitude
 - (secondary: introduces harmonic distortions)

- Open-loop circuit bandwidth depends on the excitation amplitude:
 - + non-linear phase once rate-limiter is in action...

... cannot a priori be compensated.

- however, their deteriorating effect on the loop response can be mitigated by taking them into account during the controller design.
- Example: process can be split into stable and instable 'zeros'/components

$$G(s) = \frac{A_0(s)A_u(s)}{B(s)} = G_0(s) \cdot G_{NL}(s) \quad e.g. \quad G(s) = G_0(s) \cdot \underbrace{e^{-\lambda s}}_{\lambda: \text{ delay}}$$

Using the modified ansatz ($F_{Q}(s)$: desired closed-loop transfer function):

$$Q(s) = F_Q(s) \cdot G^i(s) = F_Q(s) \cdot G_0^{-1}(s)$$

yields the following closed loop transfer function

$$\rightarrow T(s) = Q(s)G(s) = F_Q(s) \cdot G_{NL}(s) = F_Q(s) \cdot e^{-\lambda s}$$

here:

- Controller design $F_{Q}(s)$ carried out as for the linear plant
- Yields known classic predictor schemes:
 - delay \rightarrow Smith Predictor
 - rate-limit \rightarrow Anti-Windup Predictor

If G(s) contains e.g. delay λ & non-linearities G_{NL}(s)

 $G(s) = \frac{e^{-Ns}}{\tau s+1} G_{NL}(s)$

- with au the power converter time constant and
- yields Smith-Predictor and Anti-Windup paths:

 $G^{i}(s) = \frac{\tau s + 1}{1}$

 $D_{PID}(s)$ gains are independent on non-linearities and delays!!

 $D(s) = \frac{Q(s)}{1 - Q(s)G(s)}$

Time Domain: Example: LHC Feedbacks Controller – CODE Snippet

- Final implementation does not have to be complicated, Alternative C-style representation:
 - Colour coding:
 - classic linear controller
 - Anti-Windup branch
 - Smith-Predictor branch

Total number of lines: ~ 50

- + a few lines for:
 - settings management
 - scheduling/automatisation
 - exception handling
 - ...

```
Ecurrent=0;
DeltaI = request-fmeasurement;
```

```
// subtract Smith Predictor inhibit signal
if (Smit_Predictor==kTRUE) DeltaI -= SmithP;
dcurrent[index]=DeltaI;
```

```
// PID controller
// analogue to digital gains calibration (essentially sampling)
Double_t C = MAX_SAMPLING*sampling;
```

```
// proportional control
Ecurrent += +Kp*dcurrent[index];
Ecurrent += -Kp*dcurrent[index-1];
```

```
// integral control
Ecurrent += +Ki*C*dcurrent[index];
```

```
// derivative control
Ecurrent += +Kd/C*dcurrent[index];
Ecurrent += -Kd/C*2*dcurrent[index-1];
Ecurrent += +Kd/C*dcurrent[index-2];
```

```
// if DeltaI is large -> boost response to the rate limit
```

```
if (non_linear_control==kTRUE)
```

```
if (fabs(non_linear_parameter*dcurrent[index]*sampling_f)>=(MAX_RAMP)) {
    Ecurrent=Ecurrent/fabs(Ecurrent)*(MAX_RAMP/sampling_f);
    non_linear=Ecurrent/fabs(Ecurrent)*MAX_RAMP*scale;
```

```
} else non_linear=0;
```

```
// MIMO system: rate limit has to be scaled the other circuits
```

// slowest determines the speed of the fastest circuits

```
// (for coherence reasons)
```

```
if (anti_windup==kTRUE)
```

if (fabs(Ecurrent)>(MAX_RAMP/sampling_f)) {

```
if (Ecurrent+=0) Ecurrent=Ecurrent/fabs(Ecurrent)*(MAX_RAMP/sampling_f);
```

```
setcurrent+=Ecurrent;
```

```
// alternatively: if feedback signal from the PC are available
```

```
// setcurrent=current[index]+Ecurrent;
```

```
if (open_loop==kTRUE) setcurrent=request;
index++;
```

```
// Smith Predictor renew for next cycle
SmithPl=Smith_Predictor1(x, setcurrent); // undelayed plant
SmithP2=Smith_Predictor2(x, setcurrent); // delayed plant
SmithP = (SmithPl-SmithP2); // SP inhibit signal
```


Motivation for Delay and Rate-Limiter Compensation Example: LHC orbit (Q,Q',C⁻, ...) feedback control

Introduction to Feedback Controllers, Chamonix, Ralph. Steinhagen@CERN.ch, 2007-12-12

- Among many arguments:
 - Pro analogue: most process to be controlled are analogue
 - Pro digital: most controller are nowadays digital
 - "Con-example": digital only controller design (inter-sample response)
 time domain:

- Mitigation: iterative design approach between analogue and digital domain
 - sampling of simulation needs to be significantly larger than FB sampling
 - can be time consuming (especially for large MIMO systems)
 - beware of numerical instabilities and artefacts

... 10Hz sampling to achieve a closed loop 1Hz bandwidth:

- … a theoretic limit assuming a perfect system (no noise, model errors)!
- common sense/advise: $f_s > 25 \dots 40 x$ desired closed-loop bandwidth f_{BW}

- Feedbacks are only as good as the measurements they are based upon!
 - Systematic and thorough analysis of involved beam instrumentation and corrector circuits is essential!
- Shown how large MIMO systems and their control can be decomposed into: 'Space-' (classic parameter correction, usually SVD based and 'Time-Domain'.
- Youla's affine parameterisation facilitates optimal adaptive non-linear control
 - enables simple gain-scheduling based on operational scenario
- Beware of sampling!

Reserve Slides

- Imperfect optic and calibration error can deteriorate the convergence speed on the level of the SVD based correction:
- Example: 2-dim orbit error surface projection

28/26

2nd Example: classic 2nd order process:

$$G(s) = \frac{K_0 \omega_0^2}{s^2 + 2\zeta \omega_0 s + \omega_0^2}$$

 $D(s) = \frac{Q(s)}{1 - Q(s)G(s)}$

 K_0 : open loop gain, ω_0 : characteristic frequency ζ_0 : attenuation

Using standard ansatz:

$$Q(s) = F_Q(s) \cdot G^i(s) = \frac{\omega_{cl}^2}{s^2 + 2\zeta_{cl}\omega_{cl} s + \omega_{cl}^2} \cdot G^i(s)$$

yields classic PID controller (optimal gains):

$$D(s) = K_p + K_i \cdot \frac{1}{s} + K_d \cdot \frac{s}{\tau_d s + 1}$$

with:
$$K_p = \frac{4\zeta_{cl}\zeta_0\omega_0\omega_{cl} - \omega_0^2}{4K_0\zeta_{cl}^2} \qquad K_i = \frac{\omega_0^2\omega_{cl}}{2K_0\zeta_{cl}}$$
$$K_d = \frac{4\zeta^2\omega_{cl}^2 - 4\zeta_0\omega_0\zeta_{cl} + \omega_0^2}{8K_0\zeta_{cl}^3\omega_{cl}} \qquad \tau_d = \frac{1}{2\zeta_{cl}\omega_{cl}}$$

- further simplification: require critical damping $\rightarrow \zeta_{cl}$:=1
 - $\omega_{_{\text{cl}}}$ ~ 'open loop bandwidth' is the remaining free parameter

Full LHC orbit simulation @1KHz sampling, (BPM sampling: 25Hz)

Full LHC orbit simulation @1KHz sampling, (BPM sampling: 25Hz)

