

LHC Commissioning Working Group:

Classification and Detection of LHC BPM errors and faults

Ralph J. Steinhagen

with input from: R. Jones, S. Redaelli, J. Wenninger and others

- Formal definition of "Bad" BPM: 'errors' and 'faults'/'failures'
- Examples for common failure modes and measurement errors
 - Test procedures to identify faulty or erroneous BPMs
 - pre-checks without beam before every run
 - pre-checks with Pilot beam at the start of every run
 - continuous monitoring during LHC Orbit Feedback operation

Some Definition

A more formal definition of "Bad": Distinguish between beam position monitor...

- *Error*: inconsistency between measured and true beam position
 - minimised by calibration or re-alignment
 - can lead to a a 'Fault' if exceeds pre-defined limits

Fault or Failure:

- an error exceeding specified limits or
- the unavailability of the measurement

N.B.

'accuracy' := maximum measurement error ≠ resolution 'resolution' := minimum measurable position change

 In a linear model, errors can be further decomposed into an 'offset and 'calibration factor':

$$x_{meas} = x_{offset} + a_{cal} \cdot x_{true}$$

- (some) errors affect either offset or slope only
- absolute offset often not required (provided it is constant):
 - \rightarrow e.g. beam-based alignment of LHC Collimation
 - \rightarrow e.g. orbit response or equivalent lattice response measurements
- systematic calibration factor is minimised by beam-based steering
 - LHC OFB Example: Assuming 20% beta-beat or 20% BPM calibration error, FB reaches after 7 iterations the same convergence as after one iteration for a 1% beta-beat/BPM calibration error.

- Uncertainties in the beam response matrix reduced the effective control/feedback bandwidth but does not affect the steady-state precision
- E.g. LHC orbit feedback:

- BPM stability analysis depends on the choice of reference system:
 - magnetic quadrupole centre (minimising feed-down effects)
 - geometric centre of beam screen (maintaining aperture constraints)
 - external reference
- Several reference system definitions possible:
 - LHC's choice: Safety first \rightarrow beam screen centre as reference

- Beam Position Measurement:
 - electrical BPM bias:
 - electrical BPM centre w.r.t. geometric BPM centre:
 - mech. BPM centre w.r.t. beam screen centre:
 - after aperture scan:
 - electrical BPM centre w.r.t. magnetic quad. centre:
 - after k-modulation:

(mostly limited to insertion regions)

- Survey group targets for magnet alignment:
 - 0.2 mm r.m.s. globally , 0.1 mm r.m.s. as an average over 10 cells
 - N.B. Orbit FB: working assumption: 0.5 mm r.m.s.
 - Watch out: CLIC-Note-422, CERN-THESIS-2001-010
 → final focus stability might be determined by systematic drifts

- 100 µm r.m.s.
- 200 µm r.m.s.
- < "200 µm r.m.s."
- ~ 130 µm
 - 200 µm r.m.s.
- < 50 (5?) µm

 bunch length σ_b, intensity n_b
 (σ_f: filter time constant) and integrator temperature changes ΔT, filling pattern, ...:

$$\Delta x_{error} \sim \frac{\sigma_{eff}^3}{n_b^{1.5}} + \approx 15 - 20 \frac{\mu m}{o_C} \cdot \Delta T$$

with $\sigma_{eff} \approx \sqrt{(\sigma_b^2 + \sigma_f^2)}$

Some Failure Sources:

- From the point of view that the BPM should measure position...
- The measurement may fail if:
 - open connections, short circuits, broken optical fibre, etc.
 - observable: no beam position related change or reading
 - the Wide-Band-Time-Normaliser card is in 'CALIBRATON' mode
 - observable: no true beam position related change or reading
 - BPM 'POSITION/INTENSITY' switch to 'INTENSITY'
 - observable: no beam position related change or reading
 - − BPM is set to 'HIGH-SENSITIVITY' ($n_b < 5.10^{10}$) though bunch intensity $n_b > 5.10^{10}$ (→ 'LOW-SENSITIVITY') and vice versa
 - BPM will trigger on bunch reflection and ghosts, observable: spikes
 - Sensitivity switch not triggered by/synchronised with the orbit feedback
 - observable: steps

...plus lots of other sources which usually cause the absence of orbit acquisitions.

- Three main lines of defence against BPM errors and faults:
 - 1 Pre-checks without beam using the in-build calibration unit
 - eliminates open/closed circuits, dead circuits/element candidates
 - 2 Pre-checks with Pilot and Intermediate beams
 - verifies calibration offset (guarantee) and slope (golden orbit)
 - verifies/guarantees proper function of machine protection
 - 3 Continuous data quality monitoring through Orbit Feedback
 - detects spikes, steps and BPMs that are under verge of failing
 - (k-modulation can for a few (insertion) BPMs provide some additional limited cross-checks for BPM misalignments w.r.t. magnetic quadrupole limits. However: no hard limits!)

Prior each run:

- Each LHC WBTN can be put into an in-situ calibration mode
 - verifies active links/unbroken cabling
 - verifies that WBTN and rest of the acquisition chain is alive
 - verifies/removes drifts of electronic components
- However: With beam, from the beam position measurement point of view, calibration or intensity mode are equivalent to a BPM failure:
 - will/should be monitored through
 - LHC Sequencer/Software Interlock System
 - BPM turn-by-turn data concentrator and/or
 - LHC Orbit Feedback Controller/Service Unit
 - small additional status flag in orbit data
 - ceasing of feedback operation till: ('calibration mode' v 'intensity mode') == false

LHC Commissioning Working Group, Ralph.Steinhagen@CERN.ch, 2007-10-23

- Two simple functional tests to check whether BPMs are working. Idea: "Every non-moving position reading indicates a dead BPM".
 - free betatron oscillation with rotating phase 1
 - non-moving BPM readings \rightarrow faulty BPM
 - tests calibration factor and/or optics
 - 2 aperture scan to checks abs. BPM offsets and insures proper machine protection functionality: \rightarrow Bumps may compromise collimation function¹
 - To guarantee (two stage) cleaning efficiency/machine protection:
 - TCP (TCS) defines the global primary (secondary) aperture
 - Orbit is not a "play-parameter" for operation, except at low intensity.

('Playing' with the orbit will result in quasi-immediate quench at high intensity.)

Scan using two COD magnets (currents: $I_1 \& I_2$) with $\pi/2$ phase advance:

- Scan (assuming global aperture of ~ 7.5σ):
 - $\phi = 0 \rightarrow 2\pi$ requires ~25 seconds @7 σ , per transverse angle
 - propose to measure at four transverse angles: 0°, 45°, 90°, 125°
- Increase amplitude (COD currents) till orbit shift $\approx 6.7\sigma$
- Loss does not exceed predefined BLM threshold if COD settings@ 6.7σ :
 - Yes: \rightarrow mechanical aperture \geq 6.7 s \rightarrow orbit is safe
 - No: \rightarrow mechanical aperture $\leq 6.7 \text{ s} \rightarrow$ orbit is un-safe
- additional feature: compare measured with reference BPM step response (x_{co} = 0-3 σ)
 - \rightarrow rough optics check (phase advance and beta-functions)

- After some preliminary discussions with collimation (S. Redaelli):
- Propose to perform two procedural steps for each fill (assume: 'empty LHC' → 'Pilot' → 'Intermediate Beam' → filling of nominal beam → ...)
 - 1 After first Pilot injection: scan aperture <u>with retracted collimators</u> till either the assumed mechanical aperture is reached or beam loss is triggered
 - eliminates "dead" BPMs for 'HIGH-SENSITIVITY' setting
 - also: identifies BPMs that are in calibration/wrong gain mode
 - gives an estimate of the BPM offsets <u>and</u> tests the safe aperture model with and accuracy of better than one r.m.s beam width.
 - further: verifies that either injection optics (orbit response) is within tolerances or that the BPM calibration is correct
 - 2 After injection of intermediate beam: <u>collimators in nominal positions</u> w.r.t. above measured global aperture and scan till a pre-defined beam loss (pattern) is reached
 - eliminates "dead" BPMs for 'LOW-SENSITIVITY' setting
 - verifies that primary collimators/absorbers are set correctly
 - \rightarrow Partial assuarance that we setup the system properly....

LHC BPM Prototype in the SPS:

- Most common failure symptoms: no orbit info available, spikes and steps
 - Short term (few ms-s): Zero Order Holder (ZOH)
 - Long term: Disable BPM in feedback and recalculate SVD pseudo-inverse matrix
 - Only a few drifts observed: systematic on bunch length & bunch intensity

- 1. BPM phase advance of $\sim \pi/4$:
 - Twice the sampling than minimum required to detect β -oscillation
 - Distribution of consecutive BPMs on different front-ends (minimise impact of front-end drop outs)
- 2. Detection of erroneous BPM failures

(x_i(n)=position at ith monitor, n: sampling index; $\sigma_{_{orbit}}$ = residual orbit r.m.s.)

- Reject BPM if the following applies:
 - Cuts in Space Domain:
 - (BPMs marked by the front-end itself)
 - $x_i(n) > machine aperture$
 - $x_i(n) x_{i,ref} > 3 \cdot \sigma_{orbit}$
 - Option: interpolate position from neighbouring BPMs (as done in APS)
 - Cuts in Time Domain (Spike/Step detection!):
 - $\Delta x_i(n)=x_i(n)-x_i(n-1) > 3 \cdot \Delta x_{rms}(n \rightarrow n-m)$ (dynamic r.m.s. of last 'm' samples)
 - filters to reduce noise (e.g. low integrator gain)
 - re-enable BPMs with new reference if dynamic r.m.s. is stable for n seconds
 - ..
- Difficult to detect coherent, very slow or systematic drifts

(e.g drift of BPM electronics vs. systematic ground motion, temperature drifts ... etc.)

3. Use SVD based correction \rightarrow less sensitive to BPM errors

3.Continuous BPM data quality checks through LHC OFB Feedback Sensitivity to BPM Failure

- Propagation of single (arc) BPM failure with $x_i(n) < 3 \cdot \sigma_{orbit} < \sigma_{beam}$
 - #λ≈250: < 40% (β ≈ 175m) resp. < 10% (β ≈ 39 m)
- Propagation of random (white) noise on all BPMs
 - − 30% (worst case # λ =529) resp. 10% (OFB operation with # λ ≈250)
- BPM induced noise on orbit (single bunch):
- < 0.01 0.4 σ Single BPM failure: < 0.001 σ (inj) resp. 0.02 σ (coll) White BPM noise: [%] % 10² 10^{2} see previous slide $\frac{\sigma_{\text{before}}^{-\sigma_{\text{after}}}}{\sigma_{\text{before}}}$ σ_{beam} σ_{noise} 11 G_{noise} 10 10 ii. G_{svb} noise propagation: white noise propagation \leftarrow Trade-off required! \rightarrow BPM.33L4.B2 (β≈ 175 m) BPM.34L4.B2 (β≈ 39 m) 10^{-1 L} 10-1 100 0 200 300 500 400 100 200 300 400 500 n $\#\lambda_{\mathsf{svd}}$ $\#\lambda_{\mathsf{svd}}$ more precise corrections more prone to BPM errors 17/20

- Orbit feedback procedure in case of a
 - spike: fail-safe choice of assuming that orbit is at reference position
 - step: pause feedback, average orbit before and after detected step (used for a-posteriori calibration) and continue from new averaged orbit

 Presently, the following errors/failures/states are identified, classified and distributed through OFB Controller/Service Unit (BPM concentrator)

BPM front-end:

- kFRONTEND_NOT_AVAILABLE
- kFRONTEND_SINGLE_ACQ_FAILURE
- kFRONTEND_TOO_HIGH_ERROR_RATE
- kFRONTEND_INTENSITY_MODE_SET
- kFRONTEND_CALIBRATION_MODE_SET
- kFRONTEND_HIGH_INTENSITY_MODE
- kFRONTEND_DAB_TEMPERATURE_ABOVE
- kFRONTEND_DAB_TEMPERATURE_BELOW
- kFRONTEND_DESELECTED_BY_EXPERT

OFB Controller/SU & Operator/GUI

- kOFC_PACKET_NOT_ARRIVED
- kOFC_PACKET_ARRIVED_LATE
- kOFC_DETECTED_SPIKE
- kOFC_DETECTED_STEP
- kOFC_TOO_HIGH_ERROR_RATE
- kOSU_PACKET_NOT_ARRIVED
- kOSU_PACKET_ARRIVED_LATE
- kOSU_DETECTED_SPIKE
- kOSU_DETECTED_STEP
- kOSU_TOO_HIGH_ERROR_RATE
- kFBEXPERT_FAULTY
- kFBEXPERT_TEMPORARILY_DESELECTED
- kOPERATOR_FAULTY
- kOPERATOR_TEMPORARILY_DESELECTED 19/20

Conclusions

- Many BPM error and failure sources are understood and anticipated in the orbit steering and feedback procedures
 - Provided they are randomly distributed (and not at critical locations such as collimation, injection/extraction...):
 - OFB can cope with up to20% of erroneous/faulty BPMs
- Three main lines of defence against BPM errors and faults:
 - 1 Pre-checks without beam using the in-build calibration unit
 - 2 Pre-checks with Pilot and Intermediate beams (aperture scans)
 - 3 Continuous data quality monitoring through Orbit Feedback
 - Something to be kept in mind: To verify and re-check deselected BPMs in order to not end up with "zero" as working tagged BPMs
- More details on BPM error, failures and FB function can be found in: *"LHC Beam Stability and Feedback Control - Orbit and Energy"*, CERN-AB-2007-049 20/20

additional slides

How to determine the actual aperture?

or:

How do we now that we established a good/safe orbit?

Two methods to test whether the closed orbit is within 6.7σ of the available mechanical or dynamic aperture:

- Yes: \rightarrow mechanical aperture \geq 6.7 $\sigma \rightarrow$ orbit is safe
- No: \rightarrow mechanical aperture $\leq 6.7 \sigma \rightarrow$ orbit is un-safe
 - rework orbit reference (compare with old reference....)

no

Beam Position Monitors:

- Procedure:
 - A: Initial check whether Orbit is safe:
 - aperture scan (ε blow-up, betatron-oscillation)
 - Potential bump scans to determine location of aperture
 - save "safe BPM reference" current settings $\rightarrow x_{ref}$ = "SAFE SETTING"

B: Check:

- if ($|\mathbf{x}_{\text{meas.}} \mathbf{x}_{\text{ref}}| \le \Delta \mathbf{x}_{\text{tol}}) \dots$
- FALSE: potential orbit bump detected
- TRUE: Orbit is safe

yes

- Pro's:
 - Easy to check with circulating beam
 - Less dependent on machine optics
 - Sensitive to most orbit manipulations
- Con's:
 - erroneous BPMs \rightarrow but: gives indication which BPMs are not working.
 - No information before injection
 - Bunch intensity systematics (gain settings) and change of BPM calibration

LHC-BPM-ES-0004 rev. 2.0, EDMS #327557, 2002, p. 25:

	Measure ment		Ρ	Range	Accuracy	Scale error	Offset	Non- linearity	Resolution
					peak	peak	peak	peak	rms
eading		TR2		R2	±2000µm	+	+	+	+
ectory on itself	TR3		*	R1	±500μm	+	NR	+	+
rror at injection		TR4		R1	±500μm	+	NR	+	+
				R1	±50μm	+	NR	+	+
m mismatch at injection		TR5		R1	±1500µm	+	NR	+	+
				R1	±250μm	+	NR	+	+
d local Q' checks	TR7/TR8		*	$\pm \ 1 \ mm \subset R1$	±400μm	+	NR	+	+
					±50μm	±4%	NR	+	+
		TR11		R2		NR	NR	±500µm	50µm
optimisations		CO2	*	R1	±500μm	+	±250μm (±750μm)	+	+
imation/Orbit FB	CO3			$\pm 1 \ mm \subset R1$	±20μm	NR	NR	NR	+
njection elements	CO4			$\pm 1 \ mm \subset R1$	±30µm	+	+**	+	+
error at injection	C07			R1			±100µm	±200μm over ±4mm	1000µm
m FB (radial loop)	CO8			R1	±250μm	+	NR	+	+
on measurements	C O	IP		\pm .1 mm $\sub{R1}$	±15μm	+	NR	+	+
	9	other		\pm 1 mm \subset R1	±175μm	+	NR	+	+
o4/a4 (~TOTEM)	C014			\pm .1 mm $\sub{R1}$	±10µm	+	NR	+	5µm

Beam thre Close traj Position e

Momentur detection

Optics and

Aperture

LHC Colli Orbit at in Position e

Momentu Dispersio

b2/a2 to b