

On the Feasibility of (semi-) automated Tune Control in the PS

Ralph J. Steinhagen

with special thanks for their input to A. Boccardi, R. Garoby, M. Gasior, S. Gilardoni, J.J. Gras, Y. Papaphilippou, R. Steerenberg

Motivation

- AB Management Board Meeting discussion (2007-08-13):
 - "Further tests were carried out on the pole face windings during the week and some higher frequency perturbations (100, 150 and 200Hz*) were observed in the beam. "
 - "S. Myers asked R. Garoby (for the BI group) to investigate the feasibility and the potential bandwidth of a closed loop control of the tune in the PS."
 - (*minimised through power-converter controller optimisation)

- Some basic considerations:
 - Stability: "What are the required stabilities on Q/ξ ?"
 - Controllability:
- "Can Q/ξ be controlled without 'hidden parameters'?"
- **Observability:** "Can we measure Q/ξ (and also C⁻) robustly?"
- will comment on staged implementation, steps and possible performance

- Discussion with OP/ABP (Rende, Yannis):
 - main outcome: inconclusive, since most beam parameter (orbit, tune, chromaticity) have/could not be measured systematically in the past
 - most tight requirements during resonant extraction (slow, MTE) 10⁻³...10⁻⁴
 - otherwise: "keep the beam in the pipe"
 - minimisation of resonances, transition crossing, ...
 - to be kept in mind: the PS was/is running without beam-based feedbacks on orbit, tune, coupling and chromaticity for ~ 50 years
 - ... still the slow extraction worked.
 - preliminary: $\Delta Q \sim 10^{-2} \dots 10^{-3}$, $\Delta \xi \sim 0.1 \dots 0.2$ units?? (~SPS/LHC!?!)
 - time-scales are unclear working assumption: ~ SPS (in turn scale!)
- (Ongoing) observation with beam required to quantify PS reproducibility and to cross-check real requirements with physics model prediction
 - N.B. "Requirements" are tighter than what is actually achieved in the PS. Many PS cycle show tune stabilities in the order of a few percent (see measurements)

• *"Recent" 5-current mode implementation eliminates hidden parameters and enables independent control of* Q_{H} , Q_{H} , ξ_{H} and ξ_{V}

– orthogonal control of: Q_x , Q_y , ξ_x , ξ_y

(schematics courtesy Mariusz Juchno) 5/21

Response can be cast into beam matrix form, e.g.:

- source: R. Gouiran, CERN/PS/SM 76-1, ΔI_{xx} [A], p [GeV/c], p <15 GeV/c
- Iron yoke saturation makes matrices slightly momentum dependent
 - differences per matrix element are small: < 10...20%
 - does not pose a big problem for feed-back systems
- Main issues/concern:
 - Large differences (>100%) between model and measured response matrix
 - Assumes small betatron-coupled machine
 - Most PS cycle at least partially coupled (quality of 5-current MD reponse matrix data?)

Controllability: PS' Combined Function Magnets - Circuit and PFW Time-Constants

- natural time constants ~ 2 ms (wide) and ~ 9 ms (narrow) resp. (wide: $R = 1 m\Omega$, L = 2 mH; narrow: $R = 2.1 m\Omega$, L = 17 mH)
 - natural circuit bandwidth ~ 125 Hz
 - PFW are by $\pm 1200V/\pm 250A$ power converters ($\Delta I/\Delta t$ |_{max} = 5 kA/s)
 - Driven "large signal" bandwidth: ~ 125 Hz
 - $(\Delta I \sim 50A \leftrightarrow \Delta Q \sim 0.1 @26 GeV/c)$
 - Driven "small signal" bandwidth: > 1 kHz (theoretical) $(\Delta I \sim 5A \leftrightarrow \Delta Q \sim 0.01 @26 \text{ GeV/c}, \text{ noise: } \sim 50 \text{ mA} \leftrightarrow \Delta Q \sim 10^{-4})$
- Main limitations:
 - non-linearities due to current rate-limit (similar to LHC PC \rightarrow easy for FB control)
 - PC sampling frequency ($f_s = 1 \text{ kHz}$) limits effective Q-loop bandwidth, typically: $f_s \approx 25...40 \cdot f_{hw}$
 - thus, from controllability point of view only Q-loop BW': $f_{hw} < 40 \text{ Hz}$
 - or: if f_{hw} := 100 Hz \rightarrow $f_s > \sim 4$ kHz

- Common approach:
 - Same diode based detection
 - Same digital acquisition system
 - Based on DAB64x
 - developed by TRIUMF (Canada) for the LHC BPM/BLM systems
 - Mezzanine cards house ADCs adapted for machine revolution frequency
 - Same FESA and BI-expert diagnostic tool chain for all CERN accelerators
- Full BBQ acquisition chain available in PS/PSB since beginning of September

Detection principle (M. Gasior, "CERN-LHC-Project-Report-853"):

- Peak detection of position pick-up electrode signals ("collecting just the cream")
- Revolution frequency content converted to the DC and removed by series capacitors
- Betatron modulation moved to low frequency range (it is carried by much longer pulses)
- Impossible to saturate (large f_{rev} suppression already at the detectors + large dynamic range)
- Large sensitivity
- Low frequency operation
 - high resolution ADCs available
 - Signal conditioning / processing is easy (powerful components for low frequencies)
- "New" additional modifications: low-pass filtering in order to reduce longitudinal RF noise (N.B. any transverse pickup is intrinsically sensitive to both longitudinal and transverse spectra.) 9/21

Some measurements with beam in the PS available

- Preliminary observations:
 - seems to be compatible with PS' "RF-gymnastics" at least with those seen on the <u>SFTPRO</u>, <u>CNGS</u>, EASTB, LHC25ns and MD2 cycle (see plots)
 - in contrast to SPS: no "tune-spectra-guarantee" without excitation
 - \rightarrow kicks (though they can be small) seem to be mandatory
 - works with un-bunched beam (see attachment)
 - transparent to <u>slow</u> bunch length variations
 - of course: further tests/optimisation are required and will be done!
 - Outstanding Issues (in progress):
 - excitation chain is controlled in a different way on each machine
 - (re-design) of PS/PSB kicker amplitude control
 - re-phasing of kick vs. bunch arrival (mainly for single ion bunch beams)
 - S/N improvements for low-signal beam (= small bunch-peak signals)
 - single ion bunches are at the limit but visible
 - Most of these issues are driven by the large observed ΔQ (~Q') variations

DAB based BBQ acquisition: PS examples PS-MD2, H/V kicks, "free-running mode"

DAB based BBQ acquisition: PS examples SFTPRO, H kicks only,

PS-SFTPRO cycle, back-to-back acquisition, H/V kicks every 5 ms, horizontal plane

k

PS-SFTPRO cycle, back-to-back acquisition, H/V kicks every 5 ms, vertical plane

PS-SFTPRO cycle Betatron-Coupling after Injection

frequency [frev]

Betatron-Coupling: CNGS1 (SPS) I/II

Betatron-Coupling: CNGS1 (SPS) II/II after reconstruction

What if.... (the nearish future) I/II

- Provided that betatron-coupling is not required and minimised to zero....
 - ...a semi-automated slow 'cycle-to-cycle' feedback control could
 - correct for fast intra-cycle perturbations due to
 - current overshoots, b₁/b₂ mismatches, ramp systematics, ...
 - correct for slow environmental induced cycle-to-cycle perturbations:
 - girder movements, temperature drifts of magnetic fields (iron), slow intensity variations, ...
 - be useful for the fast setup of new user/cycles
 - reach an "intra-cycle" correction bandwidth" of \sim 100-200 Hz
 - possible implementation:
 - could be based on the already available BBQ instrumentation (the necessary tools are there!)
 - top-level GUI that performs an automated measure-and-correct principle using chirped FFT data
 - e.g. 1024 turn-FFT every 5 ms
 - similar to what is known in the SPS as 'Auto-Pilot' in case of trajectory/orbit steering

- Provided that betatron-coupling is not required and minimised to zero....
 - ...a fully-automated intra-cycle feedback control could in addition
 - correct for fast intra-cycle perturbations due to:
 - power converter (mains) harmonics,
 - fast intensity driven tune changes (beam loss + impedance)
 - other 'truly random'/incoherent noise sources
 - reach a feed-back bandwidth of ~ 100-200 Hz (provided PC sampling frequency is increased to 4 kHz (to minimise PID phase lag))
 - possible implementation:
 - PLL is not the ideal candidate for a robust Q-loop in the PS since RF bunch splitting, gymnastics, coupling and other effects 'skews up' the beam-transfer function which is required to be reasonably stable
 - Propose: (narrow bandwidth) chirp-based excitation with continuous FFT detection is preferable (e.g. 1024-turn FFT every 100 turns)
 - robust peak-detection needs further assessment
 - control logic could be fairly easily implemented within a FPGA once the digital power converter input interface is established

Preliminary Conclusions

- The actual implementation of the five current scheme enables (new) possibilities for the control of tune and chromaticity in the PS
 - requires control/minimisation of coupling!
- However the need and/or requirements for a fast Q-loop control are unclear
- Proposed feedback implementation/deployment steps:
 - 1. Quantification of parameter requirements based on robust measurements (ongoing)
 - 2. Semi-automated cycle-to-cycle feedback control
 - could reach a intra-cycle bandwidth of about 100-200 Hz
 - could be implemented on the basis of already available hard-/software
 - 3. Fully automated in-cycle feedback within in the Q-meter FPGA
 - could reach a true closed-loop bandwidth of about 100-200 Hz

additional supporting slides

Tune Measurement with slowly-extracted unbunched Beam in the SPS

-

PS-SFTPRO(1) cycle

A1

horizonal amplitude [dB]

HOT: SPS Q' tracking study Radial RF modulation dp/p=1.6·10⁻⁵, set $\xi := 0.05$

- Uncertainties in the beam response matrix reduced the effective control/feedback bandwidth but does not affect the steady-state precision
- E.g. LHC orbit feedback:

Non-linear Slew-rate Limited Exciter Response

LHC orbit dipole corrector: $\Delta I=0.01 \leftrightarrow \Delta x \approx 15 \ \mu m @7 TeV$

Cross-Dependability and Constrains of FB Loops II/III - Coupling I/II

Strictly speaking: PLL measures eigenmodes (Q_1, Q_2) which in the presence of coupling may be rotated w.r.t. unperturbed tunes $(q_x, q_y, \Delta = |q_y - q_y|)$:

$$Q_{1,2} = \frac{1}{2} \left(q_x + q_y \pm \sqrt{\Delta^2 + |C^-|^2} \right)$$

- Possible improvement:
 - optimise tune working point (larger tune-split),
 - vertical orbit stabilisation in lattice sextupoles,
 - active compensation and correction of coupling

Cross-Dependability and Constrains of FB Loops II/III - Coupling II/II

х

- Measure ratio between regular and cross-term:
 - $A_{1,x}$: "horizontal" eigenmode in vertical plane
 - A_{1,y}: "horizontal" eigenmode in horizontal plane

$$r_1 = \frac{A_{1,y}}{A_{1,x}} \wedge r_2 = \frac{A_{2,x}}{A_{2,y}}$$

$$|C^{-}| = |Q_{1} - Q_{2}| \cdot \frac{2\sqrt{r_{1}r_{2}}}{(1 + r_{1}r_{2})} \wedge \Delta = |Q_{1} - Q_{2}| \cdot \frac{(1 - r_{1}r_{2})}{(1 + r_{1}r_{2})}$$

- Decoupled feedback control
 - $q_x, q_y \rightarrow$ quadrupole circuits strength
 - $|C^{-}|, \chi \rightarrow$ skew-quadrupole circuits strength

implemented and tested at RHIC

R. Jones e.al., "Towards a Robust Phase Locked Loop Tune Feedback System", DIPAC'05, Lyon, France, 2005 P. Cameron, this workshop's Poster Session

 \Rightarrow

Controllability -PS' Combined Function Magnets

Main Dipole's Pole-Face-Winding (PFW) Schematic (before 1978)

1x Focus. (FW, FN), 1x Defocus. (DW, DN), 8-loop (~octupole) \rightarrow 3 circuits