

PLL Tune and Chromaticity Measurements

Ralph J. Steinhagen, AB-BI-QP

Acknowledgements: A. Boccardi, M. Gasior, K. Kasinski & R. Jones

→References:

APC 2006-11-10(slides), Tune Feedback FDR (BNL, slides), DIPAC'07 (paper)

The measurement and control of

-- orbit, tune, chromaticity, energy and coupling --

will be an integral part of the LHC operation

Requirements summary (Chamonix'06):

	Orbit [ʊ]	Tune [0.5·frev]	Chroma. [units]	Energy [Δp/p]	Coupling
Exp. Perturbations:	~ 1-2 (30 mm)	0.025 (0.06)	~ 70 (140)	± 1.5e-4	~0.01 (0.1)
Pilot bunch	-	± 0.1	+ 10 ??	-	-
Stage I Requirements	± ~ 1	±0.015→0.003	> 0 ± 10	± 1e-4	« 0.03
Nominal	± 0.3 / 0.5	±0.003 / ±0.001	1-2 ± 1	± 1e-4	« 0.01

Expected Tune and Chromaticity Drifts during LHC ramp

- Exp. perturbations are about 200 times than required stability!
- however: maximum drift rates are expected to be slow in the LHC
 - Tune: $\Delta Q/\Delta t|_{max} < 10^{-3} s^{-1}$
 - Chromaticity: $\Delta Q'/\Delta t|_{max} < 2 s^{-1} \leftarrow \text{the critical/difficult parameter}$
- Requires active control relying on beam-based measurements
- Feedbacks are only as good as the measurements they are based upon!

- Classic kicked or chirp excitation:
 - limited by aperture constraints
 - Performance reduction
 - typically: $\Delta z \leqslant 0.1 \sigma$
 - Loss of particles & protection

 LHC: Δz ≤ 25 μm & Δp/p ≤ 5·10⁻⁵
 - limited by emittance blow-up (LHC: ~10 kicks)
 - Passive monitoring of residual oscillations:
 - Schottky monitors
 - Diode-based Base-Band-Q (BBQ) meter
 - → also measures incoherent external noise propagating onto the beam
 - Active Phase-Locked-Loop (PLL) systems
 - In combination with RF modulation \rightarrow chromaticity tracking

typical: ΔQ_{res}≈ 10⁻³ …10⁻⁵ 4/26

 $A \cdot sin(2\pi f_{e})$

reference signal

- FPGA based decoupled loop implementation:
 - phase-locked-loop (\rightarrow tune)
 - excitation amplitude loop
- Further compensation for other non-beam related phase responses:
 - constant lag (data processing, cables),
 - analogue pre-filters, beam exciter response...

The PLL control loop dynamics and its design split into two parts:

- Youla's affine parameterisation: \rightarrow yields optimal PI controller

$$D(s) = K_P + K_i \frac{1}{s}$$
 with $K_p = K_0 \frac{\tau}{\alpha} \wedge K_i = K_0 \frac{1}{\alpha}$

21 September 2006: First successful BBQ based PLL

- SPS 25ns fixed target beam: $26GeV \rightarrow 450GeV$, ~ 3e12 protons/beam
 - − Horizontal tune: $Q_h \approx 26.76 \rightarrow 26.66$ (slow resonant extraction)
 - Fastest tracked tune change: ΔQ ≈0.1 within about 200-300 ms
 - much faster than the maximum expected tune drift in the LHC!

Horizontal tune during ramp I/II

phase error and non-vanishing amplitude indicates lock during ramp

PLL – FFT Comparison:

excitation well below the 1 μm level (factor 10-600 below MultiQ) \rightarrow negligible emittance blow-up

Imaginary Part of Collimator Impedance: Horizontal Tune versus Full Gap Opening I/II

Correlation between tune shift and collimator opening

Imaginary Part of Collimator Impedance: Horizontal Tune versus Full Gap Opening II/II

N.B. classic tune shift measurement (FFT using BBQ) was limited by large Q'

"Free" measurement: Vertical Tune Shifts due to SPS Impedance

SPS transverse impedance and changing bunch length/intensity

"Free" measurement: SPS Impedance at 270 GeV

Using Sacherer's impedance approximation: $Z_{eff} \approx 21.54 \text{ M}\Omega/\text{m}$

Tune PLL to track Q' (measurement during ramp)

- SPS operation: $\Delta p/p > 10^{-3} \& \Delta Q_{res} \approx 10^{-3} \rightarrow \Delta Q'_{res} \sim 1$
- LHC:

- $\Delta p/p < 10^{-4} \& \Delta Q'_{res} \sim 1 \rightarrow \Delta Q_{res} < 10^{-4}$
- limited by LHC Collimation orbit 'budget': $\Delta x < 35 \mu m$ (nominal)
- tough, still not established! \rightarrow 2007 MD Target #1/3

If the accelerator world would be perfect.....

next slides: Things that can compromise PLL operation...

Cross-Dependability and Constrains of FB Loops II/III - Coupling I/II

Strictly speaking: PLL measures eigenmodes (Q_1, Q_2) which in the presence of coupling may be rotated w.r.t. unperturbed tunes $(q_x, q_y, \Delta = |q_y - q_y|)$:

$$Q_{1,2} = \frac{1}{2} \left(q_x + q_y \pm \sqrt{\Delta^2 + |C^-|^2} \right)$$

- Possible improvement:
 - optimise tune working point (larger tune-split),
 - vertical orbit stabilisation in lattice sextupoles,
 - active compensation and correction of coupling

Cross-Dependability and Constrains of FB Loops II/III - Coupling II/II

х

....................

- Measure ratio between regular and cross-term:
 - $A_{1,x}$: "horizontal" eigenmode in vertical plane
 - $A_{1,y}$: "horizontal" eigenmode in horizontal plane

$$r_1 = \frac{A_{1,y}}{A_{1,x}} \wedge r_2 = \frac{A_{2,x}}{A_{2,y}}$$

$$|C^{-}| = |Q_{1} - Q_{2}| \cdot \frac{2\sqrt{r_{1}r_{2}}}{(1 + r_{1}r_{2})} \wedge \Delta = |Q_{1} - Q_{2}| \cdot \frac{(1 - r_{1}r_{2})}{(1 + r_{1}r_{2})}$$

- Decoupled feedback control
 - $q_x, q_y \rightarrow$ quadrupole circuits strength
 - $|C|, \chi \rightarrow$ skew-quadrupole circuits strength
 - Requires local control of strong coupling sources

 \Rightarrow

What Makes the PLL Break Coupled-Bunch Instabilities

- High-sensitivity PLL that operates within the transverse feedback "noise" (alternative: pilot/sacrificial bunch)
 - Pro: range separation minimises inter-loop coupling effects
 - Con: PLL does not benefit from suppression of coupled bunch modes
 - e-cloud, impedance, beam-beam,

APC.

PLL Tune and Chromaticity Measurements, Ralph.Steinhagen@CERN.ch, 2007-06-08

APC.

What Makes the PLL Break - Synchrotron Sidebands: PLL locks on the largest peak

initial lock: open bandwidth to cover more than one side band (PLL noise ~ chirp)

• side-bands "cancel out", strongest resonance prevails

once locked: reduce bandwidth for better stability/resolution Option II: larger excitation bandwidth, multiple exciter or broadband excitation(FNAL)

What Makes the PLL Break - Tune Width Dependence

- APC, PLL Tune and Chromaticity Measurements, Ralph.Steinhagen@CERN.ch, 2007-06-08
- Reminder: optimal PLL Settings:

$$D(s) = K_P + K_i \frac{1}{s}$$
 with $K_p = K_0 \frac{\tau}{\alpha} \wedge K_i = K_0 \frac{1}{\alpha}$

What Makes the PLL Break - Tune Width Dependence

- Optimal PLL parameters (tracking speed, etc.) depend beside measurement noise – on the effective tune width.
- Intrinsic trade-off:
 - Optimal PI for large $\Delta Q \leftrightarrow$ sensitivity to noise (unstable loop) for small ΔQ
 - Optimal PI for small $\Delta Q \leftrightarrow$ slow tracking speed for large ΔQ
 - Can be improved by putting knowledge into the system: "gain scheduling"

 \rightarrow measurable dependence of $\Delta Q \sim Q'$

23/26

- Side-exciter phase appears to change linearly with Q'
 - No additional momentum modulation
 - Absolute scale requires calibration w.r.t. to classic Q' measurement
 - Non-linear effects require further assessment \rightarrow 2007 MD Target #2/3 24/26

- The prototype test of the BBQ based tune PLL were very successful!
 - Mutually exclusive modes of PLL operation:
 - either: track tune changes with $\Delta Q/\Delta t \approx 0.1/s$
 - or: achievable tune resolution ΔQ_{res}≈ 10⁻⁴ … 10⁻⁵
- Required PLL excitation was...
 - at least a factor 10 smaller than standard SPS MultiQ
 - done with a S/N ratio of less than 3..10 dB
- BBQ based PLL showed to be very robust as long as bunch-to-bunch coupling was small
 - will be addressed through selecting only single bunch
- Question is not: "Can we measure chromaticity?", but "Can we measure Q' with a given precision and minimal excitation?"
 - Requires studies of systematics with "slow" coasting beam to prove feasibility of LHC Q' baseline ($\Delta Q'=1 \& \Delta p/p \ll 10^{-4}$)

Measurement programme:

- a) LHC Q' baseline via slow $\Delta p/p$ modulation, 3x8h
- b) Indirect Q' through Δ Q measurement, 3x8h
- c) Q' through continuous head-tail phase shift, 3x8h
- d) HW tests, mostly in parallel to regular physics programme
- Total dedicated MDs:
 - coasting beam @ 270GeV: W28, W32, W35, W37, W42
 - coasting beam @ 26GeV: W30, W34
 - Reminder: assumed accelerator efficiency of about 60%

Reserve Slides

- Coupled bunch effect became more pronounced during later MDs
 - possible causes: impedance driven wake fields, e-cloud, ...

- Phase response can be explained by simple first order model:
 - e.g. classic Landau resonator $G_n(s)$ and first order coupling $K_n(s)$
 - example: two coupled bunches

Possible remedy: BBQ selects and measures only one (first) bunch

PLL Measurement Resolution I/II

- change of beam response amplitude indicates changing chromaticity
 - showed later to be cause for instabilities during the ramp

Phase can be used as an estimate for tracking error (for a given chromaticity)

Tune reference measurements (MultiQ) – (zoom in ramp):

Slow variation of Q

Chromaticity Reference Measurement during ramp (slow Δp/p + MultiQ):

- Injecition: Q'≈2
- $\Delta Q_{res} (\sim \Delta Q_{res})$ visible
- Δp/p ≈ 1.6·10⁻³

Expected LHC Tune Footprint

+-150 murad, with and without pacman

Non-linear Slew-rate Limited Exciter Response

LHC orbit dipole corrector: $\Delta I=0.01 \leftrightarrow \Delta x \approx 15 \ \mu m @7 TeV$