

Tune Feedback Final Design Review Brookhaven National Laboratory, October 24th, 2006

First Results of the PLL Tune Tracking in the SPS

Ralph J. Steinhagen Accelerator & Beams Department, CERN

Acknowledgements: A. Boccardi, M. Gasior, R. Jones, K. Kasinski, Th. Bohl and V. Ranjbar (FNAL), C.-Y. Tan (FNAL), P. Cameron (BNL)

- The measurement and control of
 - -- orbit, tune, chromaticity, energy and coupling --

will be an integral part of the LHC operation

Requirements summary:

Orbit [ס]	Tune [0.5·frev]	Chroma. [units]	Energy [Δp/p]	Coupling
~ 1-2 (30 mm)	0.025 (0.06)	~ 70 (140)	± 1.5e-4	~0.01 (0.1)
-	± 0.1	+ 10 ??	-	-
± ~ 1	±0.015→0.003	> 0 ± 10	± 1e-4	« 0.03
± 0.3 / 0.5	±0.003 / ±0.001	1-2 ± 1	± 1e-4	« 0.01
	Orbit [σ] ~ 1-2 (30 mm) - ± ~ 1 ± 0.3 / 0.5	Orbit Tune $[\sigma]$ $[0.5 \cdot f_{rev}]$ ~ 1-2 (30 mm) $0.025 (0.06)$ - ± 0.1 $\pm \sim 1$ $\pm 0.015 \rightarrow 0.003$ $\pm 0.3 / 0.5$ $\pm 0.003 / \pm 0.001$	Orbit [σ]Tune [$0.5 \cdot frev$]Chroma. [units]~ 1-2 (30 mm)0.025 (0.06)~ 70 (140)- ± 0.1 $\pm 10 ??$ $\pm ~ 1$ $\pm 0.015 \rightarrow 0.003$ > 0 ± 10 $\pm 0.3 / 0.5$ $\pm 0.003 / \pm 0.001$ $1-2 \pm 1$	Orbit [σ]Tune [$0.5 \cdot f_{rev}$]Chroma. [units]Energy [$\Delta p/p$]~ 1-2 (30 mm)0.025 (0.06)~ 70 (140) $\pm 1.5e-4$ - ± 0.1 $\pm 10.??$ - $\pm ~ 1$ $\pm 0.015 \rightarrow 0.003$ > 0 ± 10 $\pm 1e-4$ $\pm 0.3 / 0.5$ $\pm 0.003 / \pm 0.001$ $1-2 \pm 1$ $\pm 1e-4$

today's focus!

Expected Tune and Chromaticity Drifts during LHC ramp

- Exp. perturbations are about 200 times than required stability!
- however: maximum drift rates are expected to be slow in the LHC
 - Tune: $\Delta Q/\Delta t|_{max} < 10^{-3} s^{-1}$
 - Chromaticity: $\Delta Q'/\Delta t|_{max} < 2 s^{-1}$
 - Requires active control relying on beam-based measurements

- NCO: Numerically Controlled Oscillator = digital sine wave generator
- Aim of the PLL control law:
 - regulate the frequency in order to minimise $\Delta \phi$ (match to 90°)
 - first iteration choice: e.g. classic proportional-integral (PI) controller

- In addition to the tune, the beam response also depends on the chromaticity
- The PLL dynamic and its design split into two parts:
 - PLL low-pass filter: \rightarrow controller gains
 - Beam response: \rightarrow open loop gain K₀
 - first order: K₀ = const.

PLL low-pass:

$$G(s) = \frac{K_0}{\tau s + 1}$$
 with $\tau \approx 25 \, ms \, (\Leftrightarrow f = 40 \, \text{Hz})$ (1)

Youla's affine parameterisation¹ for stable plants:

$$D(s) = \frac{Q(s)}{1 - Q(s)G(s)}$$
⁽²⁾

Using the following ansatz

$$Q(s) = F_Q(s)G^i(s) = \frac{1}{\alpha s + 1} \cdot \frac{\tau s + 1}{K_0}$$

(1)+(2)+(3) yields:

$$D(s) = K_p + K_i \frac{1}{s}$$
 with $K_p = K_0 \frac{\tau}{\alpha} \wedge K_i = K_0 \frac{1}{\alpha}$

- α > T...∞ moderates closed loop response between (trade-off):
 - fast and less accurate tracking vs. slow and more accurate tracking
- ¹D. C. Youla et al., *"Modern Wiener-Hopf Design of Optimal Controllers"*, IEEE Trans. on Automatic Control,1976, vol. 21-1,pp. 3-13 & 319-338

(3)

- Similar to the other feedback designs: $1/\alpha \sim \text{effective PLL}$ bandwidth
- α facilitates the closed-loop trade-off:

fast and noise sensitive vs. slow and robust PLL loop

A more complete PLL schematic

& Response

- The first order PLL controller assumed a constant open-loop gain K₀
- Real open-loop response depends also on the actual phase and

- Optimal PLL parameters (tracking speed, etc.) depend beside measurement noise – on the chromaticity inside the machine.
- Intrinsic trade-off:
 - Optimal PI for high Q' \leftrightarrow sensitivity to noise (unstable loop) for low Q'
 - Optimal PI for small Q' \leftrightarrow slow tracking speed for large Q'
 - the choice for commissioning
- Can be improved by putting knowledge into the system: "gain scheduling"
 - injection: expect slow Q' changes \rightarrow slow but robust tracking
 - ramp: expect faster Q' changes \rightarrow faster but less robust tracking
- Testing favours 'coasting beam' (e.g. @ RHIC): Can separate temporal from systematic effects that affect the phase

21 September 2006: First successful BBQ based PLL

- SPS 25ns fixed target beam: $26GeV \rightarrow 450GeV$, ~ 3e12 protons/beam
 - Horizontal tune: $Q_h \approx 26.76 \rightarrow 26.66$ (slow resonant extraction)
 - kept lock during ramp
 - Fastest tracked tune change: ΔQ≈0.1 within about 200-300 ms
 - much faster than the maximum expected tune drift in the LHC!

Temporal evolution of the individual FFT acquisition:

- Tune resolution:
 - − FFT based (1024 turns): $\Delta Q_{res} \approx 10^{-3}$
 - PLL based:

 $\Delta Q_{res} ~ \text{<-} 10^{\text{-}4} \text{--} 10^{\text{-}5}$

- limited by underlying tune stability \rightarrow SPS is a tough testbed
- excitation below the 1 µm level (factor 10++ below MultiQ Settings)
 - negligible/no emittance blow-up
- Seem(ed) to be a very robust measurement!

A Brief Comment on the Measurement Resolution I/II

 $\Delta Q/\Delta t|_{max} \approx 0.3$ about two orders of magnitude faster than required for LHC

Used PLL to track Q' (measurement during ramp)

- LHC: $\Delta p/p < 10^{-4} \& \Delta Q'_{res} \sim 1 \rightarrow \Delta Q_{res} < 10^{-4}$
 - tough, still not established!
- Further tests with averaging over several tune measurement and slow underlying systematic Q,Q' changes
- Testing requires coasting beam for this and other Q' methods $(\rightarrow \text{RHIC})$

BBQ impresses with incredible sensitivity w.r.t. to oscillations

clamped the BBQ front end that resulted in multiple large harmonics

 \rightarrow tune could and did lock on the harmonics

Some notes on BBQ measurement II/II - Zener Effect

An additional diode in series may address this issue!

 Broke the PLL due to change of beam response (red), particularly the phase advance (turquoise):

....gave food for thought

Observed during the next day: Mismatched synchronous RF phase

- Initial Chromaticity setting was $\xi_{H/V} = 0.1$ (Q'_{H/V} ≈ 2.7 , Δ Q'_{err} < 1)
 - static chromaticity bumps during the injection plateau (26GeV)
 - varied the chromaticity a flat top (450GeV) up to $\xi_{H/V}$ = 0.9

absence/not using of transverse damper required large Q' during ramp

- Modulated RF frequency at 700 Hz, $\Delta \phi_{RF} \approx 5^{\circ}$
 - demodulated amplitude ~ chromaticity

comment: 12bunches-pmod-at-inj-chrom-change-on-injn-inj - vertical plane

Visible but modest signal

McGinnis Method III/IV

 Calibration of effective phase modulation m_f at high frequency depends on the superimposition of RF cavity and beam response:

$$e = a \cdot \sin(\omega_0 t + m_f \cdot \sin(\omega_{mod} t))$$
 with

$$m_f = \frac{\Delta f}{f_{mod}}$$

− SPS tests:
$$f_{mod}$$
=700 → Δf ≈ 10...15 Hz

McGinnis Method IV/IV

- McGinnis method proved to be feasible after fixing a "data reconstruction bug"
- Some observations in the SPS:
 - minimal longitudinal emittance blow-up
 - no cross-talk w.r.t. longitudinal damper
 - However: Cross-talk between transverse damper
 can be fixed
 - Result of phase modulation on global RF reference
 - Similar Q' resolution as for slow RF modulation
 soso
 - possibly: requires more stable tune and high precision tune tracking
 - Δφ≈0.1° ↔ Δp/p≈ 1.2·10⁻⁴
 - LHC: max allowed RF phase modulation $\Delta \phi \approx 0.4^{\circ} (\leftrightarrow \Delta p/p \approx 10^{-4})$
 - may require large RF power due to high Q of cavities
 - Will repeat the measurement with "real" coasting beam

- good

- good

2KV kick @ 270GeV, Q'≈2.6

2KV kick @ 270GeV, Q'≈10.5

MD Summary I/II

- The prototype test of the BBQ based tune PLL were very successful!
- Mutually exclusive modes of PLL operation:
 - − either: track tune changes during the SPS ramp with $\Delta Q/\Delta t \approx 0.1/s$
 - − or: achievable tune resolution $\Delta Q_{res} \approx 10^{-4} \dots 10^{-5}$
- Required PLL excitation was very low
 - at least a factor 10 smaller than standard SPS MultiQ
 - measurements were done with a S/N ratio of less than 3..10dB
 - BBQ based PLL showed to be very robust as long as:
 - the excitation level is above the noise floor (no mains problem)
 - bunch-to-bunch coupling was small
 - IMHO: should be addressed through selecting only single bunch

MD Summary II/II

- Some preliminary comments on tested chromaticity measurement methods:
 - Slow $\Delta p/p$ modulation:
 - works but requires fairly stable tune and demanding tune measurement resolution for nominal operation
 - Fast Δp/p modulation (McGinnis, Brüning, ...):
 - Q' resolution similar to slow modulation
 - BBQ based Head-tail method:
 - results not conclusive, require further studies
- Question is not: "Can we measure chromaticity?"
- But: "Can we measure Q' with a given precision and minimal excitation?"
 - Test at SPS are limited cycle length, systematic Q/Q' changes and rare costing beams
 - Require studies of systematics at "slow" machines such as RHIC to prove feasibility of LHC Q' baseline ($\Delta Q'=1 \& \Delta p/p \ll 10^{-4}$)

reserve slides

- Coupled bunch effect became more pronounced during later MDs
 - possible causes: impedance driven wake fields, e-cloud, ...

- Phase response can be explained by simple first order model:
 - e.g. classic Landau resonator $G_n(s)$ and first order coupling $K_n(s)$
 - example: two coupled bunches

Possible remedy: BBQ selects and measures only one (first) bunch

PLL Measurement Resolution I/II

- change of beam response amplitude indicates changing chromaticity
 - showed later to be cause for instabilities during the ramp

Phase can be used as an estimate for tracking error (for a given chromaticity)

(compare traditional kick + FFT yields usually $\Delta Q_{res} \approx 10^{-3}$)

Tune reference measurements (MultiQ) – (zoom in ramp):

Slow variation of Q

Chromaticity Reference Measurement during ramp (slow Δp/p + MultiQ):

- Injecition: Q'≈2
- $\Delta Q_{res} (\sim \Delta Q_{res})$ visible
- Δp/p ≈ 1.6·10⁻³