

Tune Feedback Final Design Review Brookhaven National Laboratory, October 24th, 2006



# Feedback Architecture and Commissioning at the LHC

Ralph J. Steinhagen Accelerator & Beams Department, CERN

Acknowledgements: R. Jones, J. Wenninger, F. Zimmerman





Will cover:

- Feedback architecture and its 'test-bed'
- Some comments on their commissioning

# Disclaimer:

- Already covered in earlier presentations:
  - Beam Instrumentation and their commissioning
- Will evolve most issues around orbit feedback system
  - largest multi-input-multi-output system, largest complexity
  - issues and control schemes are the same for tune (Q), chromaticity (Q'), coupling and energy feedback





Traditional requirements on beam stability (in particular orbit)...

# ... to keep the beam in the pipe!

- LHC: Requirements/time-line of key beam parameters control depend on:
  - 1. Capability to control level/ tolerances of particle losses in the machine
    - Machine protection & Collimation
    - Quench prevention
  - 2. Commissioning and operational efficiency



USLARP Tune Feedback Final Design Review, Ralph.Steinhagen@CERN.ch, 2006-10-24



#### Expected <u>dynamic</u> perturbations\*

For details, please see additional slides

|                      | Orbit<br>[ʊ]  | Tune<br>[0.5·frev] | Chroma.<br>[units] | Energy<br>[Δp/p] | Coupling    |
|----------------------|---------------|--------------------|--------------------|------------------|-------------|
| Exp. Perturbations:  | ~ 1-2 (30 mm) | 0.025 (0.06)       | ~ 70 (140)         | ± 1.5e-4         | ~0.01 (0.1) |
| Pilot bunch          | -             | ± 0.1              | + 10 ??            | -                | -           |
| Stage I Requirements | ± ~ 1         | ±0.015→0.003       | > 0 ± 10           | ± 1e-4           | « 0.03      |
| Nominal              | ± 0.3 / 0.5   | ±0.003 / ±0.001    | 1-2 ± 1            | ± 1e-4           | « 0.01      |

- Feedback priority list: Tune/Coupling  $\rightarrow$  Chromaticity  $\rightarrow$  Orbit  $\rightarrow$  Energy
- Feedback list of "what's easiest to commission":

| – 1 <sup>rd</sup> : Orbit         | $\rightarrow$ functional BPM system                          | $\rightarrow OK$ |
|-----------------------------------|--------------------------------------------------------------|------------------|
| <ul> <li>– 1½: Energy</li> </ul>  | $\rightarrow$ consequence of 100k turn acquisition           | $\rightarrow OK$ |
| – 2 <sup>nd</sup> : Tune/Coupling | $\rightarrow$ functional Q-meter (-PLL)                      | → Day I-N        |
| – 3 <sup>rd</sup> : Chromaticity  | $\rightarrow$ functional Q-meter and $\Delta p/p$ modulation | → <b>?</b> ?     |

- 3<sup>rd</sup>: Chromaticity  $\rightarrow$  functional Q-meter and  $\Delta p/p$  modulation
- Foresee time to commission feedbacks at an early stage
  - Most instruments are commissioned parasitically with first circulating beam
  - Feedbacks can significantly speed up commissioning if used at an early stage

\* numbers in brackets are 'worst case'





- Feed-Forward: (FF)
  - Steer parameter using precise process model and disturbance prediction
- Feedback: (FB)
  - Steering using <u>rough</u> process model and measurement of parameter
  - Two types: within-cycle (repetition  $\Delta t < 10$  hours) or cycle-to-cycle ( $\Delta t > 10$  hours) preferred choice!



- From the steering point of view:  $\rightarrow$  All control schemes possible
- Choice of Feedback vs. Feed-forward
  - depends on available robust beam parameter measurements



2006-10-24

# LHC orbit feedback system



BPM/COD

\_therne

crates

- Small perturbations around the reference orbit will be continuously compensated using beam-based alignment through a central global orbit feedback with local constraints:
  - 1056 beam position monitors
    - BPM spacing:  $\Delta \mu_{\text{BPM}} \approx 45^{\circ}$  (oversampling  $\rightarrow$  robustness!)
    - Measure in both planes: > 2112 readings!
  - One Central Orbit Feedback Controller (OFC)
    - Gathers all BPM measurements, computes and sends currents through Ethernet to the PC-Gateways to move beam to its reference position:
      - high numerical and network load on controller front-end computer
      - a rough machine model is sufficient for steering (insensitive to noise and errors)
      - most flexible (especially when correction scheme has to be changed quickly)
      - easier to commission and debug
  - 530 correction dipole magnets/plane (71% are of type MCBH/V, ±60A)
    - total 1060 individually powered magnets (60-120 A)
    - ~30 shared between B1&B2
  - With more than 3100 involved devices the largest and most complex system





- Tune:
  - 16x ±600A circuits powered from even IPs (2, 4, 6, 8), 2 families
  - independent for Beam 1&2, but coupling between planes
  - can use them independently, possible use of DS Quadrupoles
  - Chromaticity:
    - 32x ±600A circuits powered from even IPs, 4 families
- Coupling: four skew quadrupoles per arc, 1/2 families
  - Beam 1: 12x ±600A
  - Beam 2: 10x ±600A
- Total: 1130 of 1720 circuits/power converter → more than half the LHC is controlled by beam based feedback systems!











LHC feedback control scheme implementation split into two sub-systems:

- Service Unit: Interface to users/software control system
- Feedback Controller: actual parameter/feedback control logic
  - Simple streaming task for all feed-forwards/feedbacks: (Monitor → Network)<sub>FB</sub>→ Data-processing → Network → PC-Gateways
  - Can run auto-triggered (no timing necessarily required)
  - · Hardware and functional specifications already available







space

domain

time

domain

- The feedback controller consists of three stages:
  - 1 Compute steady-state corrector settings  $\vec{\delta}_{ss} = (\delta_1, ..., \delta_n)$ based on measured parameter shift  $\Delta x = (x_1, ..., x_n)$  that will move the beam to its reference position for t $\rightarrow \infty$ .
  - 2 Compute a  $\vec{\delta}(t)$  that will enhance the transition  $\vec{\delta}(t=0) \rightarrow \vec{\delta}_{ss}$
  - 3 Feed-forward: anticipate and add deflections  $\vec{\delta}_{ff}$  to compensate changes of well known and properly described<sup>1</sup> sources:



<sup>1</sup> properly described = accurate & fast real-time model of the source





• Effects on orbit, Energy, Tune, Q' and C<sup>-</sup> can essentially be cast into matrices:

$$\Delta \vec{x}(t) = \underline{R} \cdot \vec{\delta}_{ss}$$
 with  $R_{ij} = \frac{\sqrt{\beta_i \beta_j}}{2\sin(\pi Q)} \cdot \cos(\Delta \mu_{ij} - \pi Q)$ 

matrix multiplication

- similar for other parameters but different dimension
- their control consists essentially in inverting these matrices
  - no special arrangement/decoupling of circuits necessary!

$$\underline{R}_{orbit} \in \mathbb{R}^{1056 \times 530} \quad \underline{R}_{Q} \in \mathbb{R}^{2 \times 16} \quad \underline{R}_{Q'} \in \mathbb{R}^{2 \times 32} \quad \underline{R}_{C^{-}} \in \mathbb{R}^{2 \times 10/12}$$

- Some potential complications:
  - Singularities = over/under-constraint matrices, noise, element failures, spurious BPM offsets, calibrations, ...
  - Time dependence of total control loop
  - Controls: How to receive, process, send data ...





Task in space domain:

Solve linear equation system and/or find (pseudo-) inverse matrix R<sup>-1</sup>

$$\left\|\vec{x}_{ref} - \vec{x}_{actual}\right\|_2 = \left\|\underline{R} \cdot \vec{\delta}_{ss}\right\|_2 < \epsilon \rightarrow \vec{\delta}_{ss} = \tilde{R}^{-1} \Delta \vec{x}$$

Singular Value Decomposition (SVD) is the preferred orbit feedback workhorse:
 standard and proven eigenvalue approach
 insensitive to COD/BPM faults and their configuration (e.g. spacing)
 minimises parameter deviations and COD strengths

•numerical robust:

- guaranteed solution even if orbit response matrix is (nearly) singular
  - (e.g. two CODs have similar orbit response  $\leftrightarrow$  two rows are (nearly) the same)
- easy to identify and eliminate singular solutions

high complexity:

- Gauss(MICADO):  $O = \frac{1}{2} mn^2 + \frac{1}{6} n^3$
- SVD: O= 2mn<sup>2</sup>+4n<sup>3</sup>

m=n: SVD is 9 times more expensive, even on high-end CPUs full initial decomposition may take several seconds (LHC: ~15 s/plane), but once decomposed and inverted: simple matrix multiplication (O(n<sup>2</sup>) complexity, LHC orbit correction <15ms!)







- Number of for the inversion used eigenvalues steers accuracy versus robustness of correction algorithm
- Likewise applies Tune, Chromaticity and Coupling correction
  - However: Only two out of '*n*' eigenvalues are non-singular

0 0





Similar to PLL, power converter response can be approximated by low-pass:

$$G(s) = \frac{K_0}{\tau s + 1} \quad \text{with e.g.} \quad \tau \approx 0.5 \dots 1 s (\Leftrightarrow f = 1 \dots 2 Hz) (1)$$

Youla's affine parameterisation<sup>1</sup> for stable plants:

$$D(s) = \frac{Q(s)}{1 - Q(s)G(s)}$$
<sup>(2)</sup>

Using the following ansatz

$$Q(s) = F_Q(s)G^i(s) = \frac{1}{\alpha s + 1} \cdot \frac{\tau s + 1}{K_0}$$

(1)+(2)+(3) yields:

$$D(s) = K_p + K_i \frac{1}{s}$$
 with  $K_p = K_0 \frac{\tau}{\alpha} \wedge K_i = K_0 \frac{1}{\alpha}$ 

- α > T...∞ moderates closed loop response between (trade-off):
  - fast and less accurate tracking vs. slow and more accurate tracking
- <sup>1</sup>D. C. Youla et al., *"Modern Wiener-Hopf Design of Optimal Controllers"*, IEEE Trans. on Automatic Control,1976, vol. 21-1,pp. 3-13 & 319-338

(3)





- α facilitates the trade-off between speed and robustness
  - operator/gain-scheduled has to deal with only one parameter







- Two main dynamic contributions
  - Delays: computation, data transmission, etc.
  - Slew rate of the corrector circuits (voltage limitation):  $\Delta I/\Delta t|_{max} < 0.5 \text{ A/s}$ 
    - ±60A converter:
    - ±600A converter:



 $\Delta I/\Delta t|_{max} < 10 \text{ A/s}$ 





- The open-loop corrector circuit bandwidth depends on the excitation current:
  - non-linear phase once rate limiter is in action







- If G(s) contains non-stable zeros e.g. delay  $\lambda$  & non-linearities G<sub>NL</sub>(s)  $G(s) = \frac{e^{-\lambda s}}{\tau s + 1} \cdot G_{NL}(s)$
- with  $\tau$  the power converter time constant, then:  $G^{i}(s) = \frac{\tau s + 1}{1}$
- Using (1) and (4) yields  $T_0(s) = F_Q(s) \cdot e^{-\lambda s} G_{NL}(s)$
- Inserting in (1) effortlessly yields Smith-Predictor and Anti-Windup schemes:





## Some Results: Smith-Predictor and Anti-Windup









Full LHC orbit simulation @1KHz sampling, (BPM sampling: 25Hz)







Full LHC orbit simulation @1KHz sampling, (BPM sampling: 25Hz)







• ... sample the position (Q, ...) at 10Hz to achieve a closed loop 1Hz bandwidth



- ... a theoretic limit assuming a perfect system!
- common: sampling frequency > 25 ...40 desired closed-loop bandwidth





 Machine imperfections (beta-beat, hysteresis....), calibration errors and offsets can be translated into a steady-state ε<sub>ss</sub> and scale error ε<sub>scale</sub>:

 $\Delta x(s) = R_i(s) \cdot \delta_i \rightarrow \Delta x(s) = R_i(s) \cdot (\epsilon_{ss} + (1 + \epsilon_{scale}) \cdot \delta_i)$ 



- Uncertainties and scale error of beam response function affects rather the convergence speed (= feedback bandwidth) than achievable stability
- Stability limit: BPM noise and external perturbations w.r.t. FB bandwidth





- Imperfect optic and calibration error can deteriorate the convergence speed on the level of the SVD based correction:
- Example: 2-dim orbit error surface projection



24/23





Low sensitivity to optics uncertainties = high disturbance rejection:



- Robustness comes at a price of a (significantly) reduced bandwidth!





- Test bed complementary to Feedback Controllers:
  - Simulates the open loop and orbit response of COD $\rightarrow$ BEAM $\rightarrow$ BPM
    - Decay/Snap-back, ramp, squeeze, ground motion simulations, ...
    - Keeps/can test real-time constraints up to 1 kHz
  - Same data delivery mechanism and timing as the front-ends
    - transparent for the FB controller
    - <u>same code</u> for real and simulated machine:
      - possible and meaningful "offline" debugging for the FB controller







- Most feedbacks checks can be and are done during hardware commissioning:
  - Interfaces and communication from BI and to PO front-ends
  - Synchronisation of BPM acquisition (using e.g. the BPM's 'calibration' mode)
  - Synchronisation of PO-Gateways
     (using the provided 50 Hz status feedback channel)
  - Interfaces to databases
  - Using the 'test-bed' we can do the further tests without beam:
    - PID/Smith-Predictor/anti-windup at nominal/ultimate feedback frequency
    - Test automated countermeasures against failing BPMs or circuits
    - other parts of the feedback architecture: controls, non-beam-physics issues





- Things that have to and can only be checked with beam:
  - Beam instrumentation: polarities, planes, mapping
  - Corrector circuits: polarities, planes, mapping (longitudinal and beam1/beam2)
  - Transfer function and rough test of calibrations
  - Circulating beam
  - Static coupling is under control

partially done while threading the first beam!

- It is possible to run feedbacks already after above procedures:
  - e.g. auto-triggered at 0.1 1 Hz
  - lower closed loop bandwidth (through parameter α)





- Already after rough calibration of feedback controller/instruments/circuits:
  - − BPM orbit resolution: pilot  $\Delta x_{turn} \approx 200 \ \mu m \rightarrow orbit$ :  $\Delta x_{res} \approx 13-20 \ \mu m$ 
    - Energy: Δp/p<sub>res</sub> ≈ 10<sup>-6</sup>
  - − Tune resolution (pilot):  $\Delta Q_{res} \approx 10^{-3}...10^{-4}$
  - Chromaticity:  $\Delta Q'_{res} \approx 10 \rightarrow \Delta Q'_{res} \approx 1$  (tough with nominal beam!)
    - have to prove the feasibility of the measurement
  - Actual stability depends on whether we (want to) steer to these limits
- Nominal feedback performance requires calibration of instrumentation/circuits well below the 20% level
  - one simple instrument → "easy" → required time: 14 s (best case),
     one hours without automation
  - 1100++ simple instruments  $\rightarrow$  "less easy"
  - requires fully automated procedures scripts (in development)
  - estimated time (if fully automated):
    - 4 hours without margin (pure excitation/measurement time)
    - 8-16 hours = 1-2 shifts including some operational margin



# **Commissioning of Transverse Feedback Sketch**





- Phase "-1":
  - while threading the beam: rough polarity/mapping of BPMs and corrector circuits, followed by more detailed test of (omitted) circuits
  - Priority: Orbit/Energy → Tune/Coupling → Chromaticity (relevant only if ramping)
  - Should take advantage to commission all feedbacks at 450 GeV
- Phase 0: reaching "nominal" performance ...
  - refined lattice checks
  - instrumentation and circuit calibration below the 20% level

2



### Conclusions



- Feedback architecture, strategies and algorithms are well established
  - The same feedback architecture for orbit, tune/coupling, chromaticity...
  - Orbit FB: stability better than about 200  $\mu m$  should not pose a problem
  - Tune FB: ΔQ<0.003 seems possible</li>
  - Chromaticity FB:  $\Delta Q_{res} \approx 10$  or even  $\Delta Q_{res} \approx 1$ 
    - test of feasibility needed!
- Commissioning of feedbacks:
  - Most of the requirements for a minimum workable feedback systems are already fulfilled after threading and establishing circulating beam.
  - Redo the optics measurements and calibration with higher accuracies for nominal performance.
- Feedbacks are most useful when used at an early stage
  - Possibility to use feedback signals as feed-forward for next cycles





# **Reserve Slides**





- 43x43 operation: max. intensity 4.10<sup>10</sup> protons/bunch
- $\rightarrow$  No gain-switching: BPMs will always operate at 'high' sensitivity







- Direct measurement of the orbit, tune, chromaticity, ... response matrix
  - perfect response matrix
  - no disentangling between beam measurement and lattice uncertainties
  - requires significant amount of time to excite/measure the response of each individual circuit: minimum of 15 s per COD circuit (1060!)
    - optics might change more often during commission
- Optics measurement through phase advance between three adjacent BPMs<sup>1</sup>
  - Design  $\mu_{ii}$  versus measured (kick+1024 turns)  $\psi_{ii}$  phase advance:













- Stabilisation "record" in the SPS
  - 270 GeV coasting (proton) beam,
     72 nom bunches, β<sub>v</sub> ≈ 100 m
  - rivals most modern light sources
  - magnitudes better than required
  - Target: maintain same longterm stability









- CERN's Technical Network as backbone
  - Switched network
    - no data collisions
    - no data loss
  - double (triple) redundancy
- Core: "Enterasys X-Pedition 8600 Routers"
  - 32 Gbits/s non-blocking, 3·10<sup>7</sup> packets/s
  - 400 000 h MTBF
  - hardware QoS
    - One queue dedicated to real-time feedback
    - ~ private network for the orbit feedback
- Routing delay
- Iongest transmission delay (exp. verified)

(500 bytes, IP5 -> Control room ~5 km)

- 20% due to infrastructure (router/switches)
- 80% due to traveling speed of light inside the optic fibre
- worst case max network jitter « targeted feedback frequency!



- ~ 13 µs
- ~ 320 µs





- The maximum latency between CCC and IR5
  - tail of distribution is given by front-end computer and its operating system







Two main strategies:

- actual delay measurement and dynamic compensation in SP-branch:
  - high numerical complexity, due to continuously changing branch transfer function
  - only feasible for small systems
- Jitter compensation using a periodic external signal:
  - CERN wide synchronisation of events on sub ms scale that triggers:
    - Acquisition of BPM system, reading of receive buffers, processing and sending of data, time to apply in the power converter front-ends
  - The total jitter, the sum of all worst case delays, must stay within "budget".
  - Measured and anticipated delays and their jitter are well below 20 ms.
  - feedback loop frequency of 50 Hz feasible for LHC, if required...







- The front-end network interfaces are presently the bottleneck. e.g. feedback controller @ 50 Hz:
- Iots of in-/outbound connections:
  - Two types of loads:
    - Real-Time: BPM and COD control data
      - Avg. bandwidth: ~13 Mbit/s
      - short bursts: full I/O load within few ms (100 MBit/s resp. 1GBit/s, burst duration desired to be short in order to minimise the total loop delay)
    - Non-Real-Time:
      - transfer of new settings to OFC (matrix ~30 MB)
      - PID configuration etc.
      - relay of BPM and feedback data (monitoring/logging)
      - ..

- non RT-traffic
- (Peak) load similar to high-end network servers
  - Nearly constant full load during certain operational phases
- network interface should be scheduled on the device level to provide a Quality of Service (QoS) for real-time data
  - One reserved FIFO queue for feedback data
  - General purpose queue for other data









Hardware:

- both rings covered by 1056 BPMs
- Measure both planes (2112 readings)
  - Organised in front-end crates (PowerPC/VME) in surface buildings
    - 18 BPMs (hor & vert)  $\Leftrightarrow$  36 positions / VME crate
    - 68 crates in total, 6-8 crates /IR

Data streams:

- Average data rates per IR:
  - 18 BPMs x 20 bytes+overhead
  - 1056 BPMs x 20 byte
  - @ 10 Hz:
  - @ 50 Hz:

- ~1500 bytes / sample / crate
  - 94 kbytes / sample
- 7.7 Mbit/s
- ~ 38.4 Mbit/s
- Peak data rates (bursts): 100Mbit/s resp. 1Gbit/s (depending on Ethernet interface)







- Controller: must handle large matrices (~30 MB)
  - core of orbit correction:
    - multiplication of inverse orbit response matrix with input position vector: ~4•10<sup>6</sup> double multiplications per sample @50Hz: ~ 400 MFLOPS
    - 1.5 GByte/s local memory data transfer
    - several ms processing time on a high-end SMP system
  - Requirements as for high-end web, file or database servers:
    - high performance & high reliability, but:
    - hard real-time constraints: total execution time has to be deterministic and less than 20/40 ms to fit the 25/50 Hz feedback frequency requirement
- present test solution:
  - x86 based SMP server: (HP Proliant 380 DL, 2.8GHz Xeon SMP, 3 GByte RAM)
  - 2 x Gigabit Ethernet connection (one dedicated card to service unit)
  - hardware redundancy (2 power supplies, 2 disks, hw monitor, watchdog, remote ...)
  - Processing duration per feedback cycle: ~12 ms







# Automated Orbit Correction using Singular Value Decomposition







The superimposed beam position shift at the i<sup>th</sup> monitor due to single dipole kicks is described through the orbit response matrix R. It can be written as

$$\Delta x_{i} = \sum_{j=0}^{n} R_{ij} \cdot \delta_{j} \quad \text{with} \quad R_{ij} = \frac{\sqrt{\beta_{i}\beta_{j}}}{2\sin(\pi Q)} \cdot \cos(\Delta \mu_{ij} - \pi Q)$$
  
$$\Leftrightarrow \quad \Delta \vec{x} = \sum_{j=0}^{n} \delta_{j} \vec{u}_{j} \quad \text{with} \quad \vec{u}_{j} = (R_{1j}, \dots, R_{mj})^{T} \Leftrightarrow \quad \Delta \vec{x}(t) = \underline{R} \cdot \vec{\delta}_{ss}$$

where  $(\beta,\mu,Q)$  depends on the machine optic (example: Q=4.31).





#### Theorem from linear algebra\*:



eigen-vector relation:

$$\lambda_i \vec{u}_i = \underline{R} \cdot \vec{v}_i$$
$$\lambda_i \vec{v}_i = \underline{R}^T \cdot \vec{u}_i$$

final correction is a simple matrix multiplication

large eigenvalues  $\leftrightarrow$  bumps with small COD strengths but large effect on orbit

$$\vec{\delta}_{ss} = \tilde{R}^{-1} \cdot \Delta \vec{x} \text{ with } \tilde{R}^{-1} = \underline{V} \cdot \underline{\lambda}^{-1} \cdot \underline{U}^T \iff \vec{\delta}_{ss} = \sum_{i=0}^n \frac{a_i}{\lambda_i} \vec{v}_i \text{ with } a_i = \vec{u}_i^T \Delta \vec{x}$$

Easy removal of singular (=undesired, large corrector strengths) eigen-values/solutions:

- near singular eigen-solutions have  $\lambda_i \sim 0$  or  $\lambda_i = 0$
- to remove those solution:  $\lim \lambda_i \rightarrow \infty 1/\lambda_i = 0$

#### discarded eigenvalues corresponds to bumps that won't be corrected by the fb

\*G. Golub and C. Reinsch, "Handbook for automatic computation II, Linear Algebra", Springer, NY, 1971





Eigenvalue spectra for vertical LHC response matrix using all BPMs and CODs:





































# Gretchen Frage: "How many eigenvalues should one use?"

## small number of eigenvalues:

- more coarse type of correction:
  - use arc BPM/COD to steer in crossing IRs
  - less sensitive to BPM noise
  - less sensitive to single BPM faults/errors
  - less sensitive to single COD/BPM faults/errors
- robust wrt. machine imperfections:
- beta-beat
- calibration errors
- easy to set up
- ...
- poor correction convergence
- leakage of local perturbations/errors
  - not fully closed bump affects all IRs
  - squeeze in IR1&IR5 affects cleaning IRs

# large number of eigenvalues:

- more local type of correction
  - more precise
  - less leakage of local sources onto the ring
  - perturbations may be compensated at their location
- good correction convergence
- ۰.
- more prone to imperfections
  - calibration errors more dominant
  - instable for beta-beat > 70%
- more prone to false BPM reading
  - Errors & faults
- 3

#### parameter stability requirement feedback stability requirement

Choice for Q, Q', C<sup>-</sup> is much simpler: only two out of *n* non-vanishing eigenvalues! 52/23





- The orbit and feedback stability requirements vary with respect to the location in the two LHC rings. In order to meet both requirements:
  - Implement robust global correction (low number of eigenvalues)
  - fine local correction where required (high number of eigenvalues or simple bumps):
    - Cleaning System in IR3 & IR7
    - Protection devices in IR6
    - TOTEM

#### <mark>#λ large</mark> #λ large + + #λ small

coarse global SVD with fine local "SVD patches" (no leakage due to closed boundaries)

minor disadvantage: longer initial computation (global + local SVD + merge vs one local SVD)

### BPM·ω BPM·ω

coarse global SVD with weighted monitors where required ( $\omega = 1 \dots 10$ )

disadvantage: •total number of to be used eigenvalues less obvious •Matrix inversion may become instable

#### uncorrected

free orbit manipulation (within limits) while still globally correcting the orbit



USLARP Tune Feedback Final Design Review, Ralph.Steinhagen@CERN.ch, 2006-10-24



 Youla's affine parameterisation for stable plants<sup>1</sup> - showed that all stable closed loop controllers D(s) can be written as:

$$D(s) = \frac{Q(s)}{1 - Q(s)G(s)}$$

Simplifies the form of the system transfer  $T_0(s)$  and sensitivity function  $S_0(s)$ :

$$T_0(s) = Q(s)G(s)$$
<sup>(2)</sup>

$$S_0(s) = 1 - Q(s)G(s) = 1 - T_0(s)$$
 (3)

- Use following common *ansatz* for solving (1):  $Q(s) = F_Q(s)G^i(s)$  (4)
- In case of a "perfect" inverse response function (no unstable poles) (2) (3) yield simply:

$$T'_{0}(s) = F_{Q}(s)$$
  
 $S'_{0}(s) = 1 - F_{Q}(s)$ 

- $\rightarrow$  effective closed loop response can be deduced by construction of  $F_{o}(s)$
- <sup>1</sup>D. C. Youla et al., *"Modern Wiener-Hopf Design of Optimal Controllers"*, IEEE Trans. on Automatic Control,1976, vol. 21-1,pp. 3-13 & 319-338