

First Results of the PLL Tune Tracking in the SPS

Ralph J. Steinhagen

Acknowledgements: A. Boccardi, M. Gasior, R. Jones, K. Kasinski, T. Bohl (RF) and V. Ranjbar (FNAL), C.-Y. Tan (FNAL), P. Cameron (BNL)

- The measurement and control of
 - -- orbit, tune, chromaticity, energy and coupling --

will be an integral part of the LHC operation

Requirements summary:

	Orbit []	Tune [0.5·frev]	Chroma. [units]	Energy [Δp/p]	Coupling
Exp. Perturbations:	~ 1-2 (30 mm)	0.025 (0.06)	~ 70 (140)	± 1.5e-4	~0.01 (0.1)
Pilot bunch	-	± 0.1	+ 10 ??	-	-
Stage I Requirements	± ~ 1	±0.015→0.003	> 0 ± 10	± 1e-4	« 0.03
Nominal	± 0.3 / 0.5	±0.003 / ±0.001	1-2 ± 1	± 1e-4	« 0.01

today's focus!

Expected Tune and Chromaticity Drifts during LHC ramp

- Exp. perturbations are about 200 times than required stability!
- however: maximum drift rates are expected to be slow in the LHC
 - Tune: $\Delta Q/\Delta t|_{max} < 10^{-3} s^{-1}$
 - Chromaticity: $\Delta Q'/\Delta t|_{max} < 2 s^{-1}$
 - Requires active control relying on beam-based measurements

- NCO: Numerically Controlled Oscillator = digital sine wave generator
 - Aim of the PLL control law:
 - regulate the frequency in order to minimise $\Delta \phi$ (match to 90°)
 - first iteration choice: e.g. classic proportional-integral (PI) controller

- In addition to the tune, the beam response also depends on the chromaticity
 - small chromaticity: sharp peak/phase transition
 - large chromaticity: sharp peak/phase transition
 - This dependence can also be exploited to measure chromaticity:
 - two additional side exciter with constant frequency offset w.r.t. tune
 - measure small phase difference (order of a degree)

- The PLL can be split in first order into two parts:
 - PLL low-pass filter: \rightarrow PI gains $K_p \& K_i$
 - beam response: \rightarrow loop gain K₀

PLL low-pass:

$$G(s) = \frac{1}{\tau s + 1}$$
 with $\tau \approx 25 \, ms \, (\Leftrightarrow f = 40 \, \text{Hz})$ (1)

Youla's affine parameterisation for stable plants:

$$D(s) = \frac{Q(s)}{1 - Q(s)G(s)}$$
⁽²⁾

Using the following ansatz

$$Q(s) = F_Q(s)G^i(s) = \frac{1}{\alpha s + 1} \cdot \frac{\tau s + 1}{1}$$

(1)+(2)+(3) yields:

$$D(s) = K_p + K_i \frac{1}{s}$$
 with $K_p = \frac{\tau}{\alpha} \wedge K_i = \frac{1}{\alpha}$

- parameter $\alpha > \tau... \infty$ moderates closed loop response between:
 - fast and less accurate tracking vs. slow and more accurate tracking

(3)

Krzysztof's presentation: "Tracking on the Bench"

Phase of the tune tracker as it spirals into lock

Spiralling in when there is a frequency jump in the resonance

Temporal evolution of the individual FFT acquisition:

21 September 2006: First successful BBQ based PLL

- SPS 25ns fixed target beam: $26GeV \rightarrow 450GeV$, ~ 3e12 protons/beam
 - Horizontal tune: $Q_h \approx 26.76 \rightarrow 26.66$ (slow resonant extraction)
 - kept lock during ramp
 - Fastest tracked tune change: ΔQ≈0.1 within about 200-300 ms
 - much faster than the maximum expected tune drift in the LHC!

Temporal evolution of the individual FFT acquisition:

- Tune resolution:
 - − FFT based (1024 turns): $\Delta Q_{res} \approx 10^{-3}$
 - PLL based:

 $\Delta Q_{res} ~ \text{<-} 10^{\text{-}4} \text{--} 10^{\text{-}5}$

- limited by underlying tune stability \rightarrow SPS is a tough testbed
- excitation below the 1 µm level (factor 10++ below MultiQ Settings)
 - negligible/no emittance blow-up
- Seem to be a very robust measurement!

A Brief Comment on the Measurement Resolution I/II

- change of beam response amplitude indicates changing chromaticity
 - showed later to be cause for instabilities during the ramp

Phase can be used as an estimate for tracking error (for a given chromaticity)

After some spike filter routine: $\Delta Q_{res} \approx 10^{-4} - 10^{-5}$ @ 10 Hz

BBQ impresses with incredible sensitivity w.r.t. to oscillations

clamped the BBQ front end that resulted in multiple large harmonics
 → tune could and did lock on the harmonics

 Broke the PLL due to change of beam response (red), particularly the phase advance (turquoise):

....gave food for thought (new physics,)

X-Y Graph - frequency domain 2

updated

22

-50

--75 --100

--125 --150

-175

-200

Amplitude-Frequency Phase - Frequency

Phase -25 -0

[deg] -25 --50

Frequency [Tune]

Observed during the next day: Mismatched synchronous RF phase

Tried to evaluate several chromaticity measurement methods:

- slow RF frequency modulation + tune tracking (PLL & MultiQ = reference)
- fast RF phase modulation @ ~ 700 Hz (McGinnis method)
 - demodulate the RF phase modulation w.r.t. locked tune
- Head-Tail methods
 - strong kick + fast sampling oscilloscopes connected to a strip-line BPM
 - weak kick + BBQ connected to a button BPM (not successful)
 - weak kick + BBQ connected to a strip-line BPM (to be tested)
 - continuous excitation (to be tested)
- Two-Side-Exciter method: to be tested

Tune reference measurements (MultiQ):

Chromaticity Reference Measurement (slow Δp/p + MultiQ)

19/23

- Initial Chromaticity setting was $\xi_{H/V} = 0.1$ (Q'_{H/V} ≈ 2.7 , Δ Q'_{err} < 1)
 - static chromaticity bumps during the injection plateau (26GeV)
 - varied the chromaticity a flat top (450GeV) up to $\xi_{H/V}$ = 0.9

absence/not using of transverse damper required large Q' during ramp

BI-QP Section Meeting, Ralph.Steinhagen@CERN.ch, 2006-10-03

- Modulated RF frequency at 700 Hz, maximum phase angle ~ 1 deg
 - demodulated amplitude ~ chromaticity

Comparison: McGinnis vs. 'Set Chromaticity'

McGinnis method seem to be a factor 3.5 to 4 to small!

MD Summary

- The prototype test of the BBQ based tune PLL were very successful
 - could track even very fast tune changes during the SPS ramp
 - Required PLL excitation was very low
 - more than a factor 10 smaller than the standard MultiQ settings
 - very robust as long as the excitation level is above the noise floor
 - Some preliminary comments on chromaticity measurement evaluation:
 - McGinnis method works, observed the RF induced modulation
 - however: underestimates Q' by a factor of 3.5 to 4
 - next MD: redo tests but with much slower Q' modulation
 - Classic head-tail: same status as in 2004:
 - works but with up to 50% measurement uncertainty
 - Accumulated a large amount of chromaticity related data
 - analysis ongoing!

A more complete PLL schematic

