

Feed-Forward / Feedback required

Ralph J. Steinhagen

Accelerators & Beams Department, CERN and 3rd Physics Institute, RWTH Aachen

Will cover

- stabilisation of key beam parameters:
 - Orbit, Energy, Tune, Chromaticity and Coupling
- Stage I operation (43x43 bunches)
 - Summary of requirements
 - Summary of expected drifts
 - Requirements for feedbacks
- Not covered:
 - Control of higher multipoles (b_4 , b_5 , ...)
 - Luminosity
 - Fast transverse feedback (\rightarrow W. Höfle)
 - Details on instrumentation (BPMs, BBQ, Q-PLL, ...)
 - \rightarrow Providers session on Tuesday

Preliminary Remark:

- Requirements and time-line of key beam parameters control depend on:
 - 1. Capability to control level/ tolerances of particle losses in the machine
 - Machine protection & Collimation
 - Quench prevention
 - 2. Commissioning efficiency
 - Operational efficiency: optimisation of (integrated) luminosity
 ...
- → requirements on Orbit, Energy, Tune and Chromaticity scale rather with total beam intensity and beam energy than with stages.

Requirements on Orbit

- Example: Collimation System, Phase I: $43x43 \rightarrow N_{max} \approx 5.10^{12}$ protons/beam
 - required collimation inefficiency^{1,2}:

$$\eta = \frac{\tau_{\min} \cdot R_q \cdot L_{dil.}}{N_{\max}}$$

- Min. accept. lifetime: $T_{min} \approx 10$ min.
- Dilution length: $L_{dil} \approx 50 \text{ m}$
- Quench level (@7 TeV) R_q : $R_q \approx 7.6 \cdot 10^6$ prot./m/s

```
\rightarrow \eta < 0.05 (\approx single stage system)
```


- Distinction global/local less obvious, expected injection aperture (arc) ~7.5 σ \rightarrow local requirements \approx global requirements³
- Many more less strict requirements → see additional slides for details: machine protection, minimisation of feed-down effects, beam instrumentation, [..]
- Orbit stability of < 1 σ sufficient for ≤ 43 bunches ?!?
- Nominal: $\approx 0.3 \sigma$ locally (collimation) and $\sim 0.3 \sigma$ globally (machine protection³, preserving scrubbing efficiency, ..)
- ¹ R. Assmann, "Collimation and Cleaning: Could this limit the LHC Performance?", Chamonix XII, 2003
- ² S. Redaelli, "LHC aperture and commissioning of the Collimation System", Chamonix XIV, 2005
- ³ R. Steinhagen, "Closed Orbit and Protection", MPWG #53, 2005-12-16

Requirements on Energy

- Energy matching between of SPS \rightarrow LHC
 - horizontal orbit corrector magnets adjust LHC energy
 - residual non dispersion orbit perturbation needs further correction (e.g. \rightarrow orbit FB)
- A priori not urgently required for low intensity beams, but
 - may keep capture losses below an acceptable limit
 - minimises abort gap population & feed-down of higher multipoles
- \rightarrow favourable once running with high intensity
- Required¹ initial momentum stability: Δp/p < 1·10⁻⁴
 - Simplifies setup of nominal beam after commissioning pilot
 - Nominal²: ∆p/p < 1·10⁻⁴

¹ E. Chapochnikova, private communications

² E. Shaposhnikova, "Abort Gap Cleaning and the RF System", Chamonix XII, 2003

³ T. Linnecar, "RF Capture and Synchronisation", Chamonix XII, 2003

- Tune spread ΔQ|_{av}≈1.15·10⁻²
 - fixed by available space in Q-diagram
 - Working assumption: (first order:

no non-linear effects, avoid 3rd and 4th order resonances)

 $\delta Q \leq 0.015 \rightarrow 0.003$ (early commissioning $\rightarrow 43x43$)

- Nominal^{1,2}: $\Delta Q \le 0.003$ (inj.) $\delta Q \le 0.001$ (coll)
- Chromaticity
 - SPS: Δp/p: 2.8·10⁻⁴

(actual $\Delta p/p$ given by SPS \rightarrow LHC inj.)

 \rightarrow allowed max lin. chromaticity (5-6 σ , first order):

$$Q'_{max} \propto \frac{\Delta Q_{av}}{\Delta p / p} \longrightarrow Q'_{max} \approx 10 \& Q' > 0 !$$

- Nominal^{1,2}: $Q'_{max} \approx 2 \pm 1$

"Numbers are estimates, other more/less strict choices are of course possible – commissioning will clarify real requirements!"

¹ S. Fartoukh, O. Brüning, "Field Quality Specification for the LHC Main Dipole Magnets", LHC Project Report 501 ² S. Fartoukh, J.P. Koutchouk, "On the Measurement of the Tunes, [..] in LHC", LHC-B-ES-0009, EDMS# 463763

Requirements on Coupling

- Minimum distance Δ between tunes given by coupling c_
 - LHC injection: $\Delta_{=}|q_x-q_y|=0.03$, collision: $\Delta_{=}0.01$

- Closest tune approach \rightarrow c_«0.03 and c_«0.01 respectively
- Requirement for other feedbacks that rely on decoupled planes
- Proposal for alternate higher tune split¹: Δ_{1} =0.1 (q_x=0.285 ,q_y=0.385)

¹S. Fartoukh, "Commissioning tunes to bootstrap the LHC", LCC #31, 2002-10-23

Chamonix XV, Ralph.Steinhagen@CERN.ch, 2006-01-23

- From Decay/Snap-back expected dynamic perturbations* (MB & MQ)
 - For details, please see additional slides

	Orbit [σ]	Tune [0.5·frev]	Chroma. [units]	Energy [Δp/p]	Coupling [c_]
Exp. Perturbations:	~ 0.5	0.014 (0.06)	~ 70 (140)	± 1.5e-4	~0.01 (0.1)
Pilot bunch	-	± 0.1	+ 10 ??	-	-
Stage I Requirements	± ~ 1	±0.015→0.003	> 0 ± 10	± 1e-4	« 0.03
Nominal	± 0.3 / 0.5	±0.003 / ±0.001	1-2 ± 1	± 1e-4	« 0.01

- Chromaticity is the most critical parameter to control
 - defines lifetime and dynamic aperture (= losses) inside the ring
 - Tune is less critical but its measurement a pre-requirement for above
- Require coupling control esp. at start of ramp to enable other controls
- Control of orbit is the easiest one
 - Measurement and correction scheme well established
 - consequence of having BPM with 100k turn acquisition: \rightarrow Energy feedback
 - Stage I: injection more relaxed (except Chromaticity)

- Orbit & Energy:
 - Injection (ground-motion, Δb_1):
 - Snap-back:
 - β^{*}-Squeeze:

0.3 σ/100 s 0.1 σ/s

~ 0.4 σ /10 h

- \rightarrow Control @1 Hz sufficient
- \rightarrow Control @1-10 Hz ??
- \rightarrow Control @10++ Hz OK

 $- (\Delta Q'/\Delta t)_{max} < 1.3 \text{ units/s & } (\Delta Q')_{max} < ~ 10 \text{ units}$ → (measure &) control chromaticity every ≈ 10 seconds (or faster)

- Feed-Forward: (FF)
 - Steer parameter using precise process model and disturbance prediction
 - mostly using magnet model predictions based on magnet measurements
 - The (only) choice for the sector test and very first LHC injection

Feedback: (FB)

- Steering using rough process model and measurement of parameter
- Two types: within-cycle (repetition Δt<<10 hours) or cycle-to-cycle (Δt>10 hours)
 predicted disturbance
 preferred choice!

- From the steering point of view: \rightarrow All control schemes possible (see Massimo's talk)
- Choice of Feedback vs. Feed-forward
 - depends on available robust beam parameter measurements

- In principle: \rightarrow Work of an operator = manual feedback!
 - (Semi)-automated FB \rightarrow liberates operators/EIC for more important tasks
 - Expected LHC turn around time is long (hours)
 - Trial-and-Error optimising/learning of "injection, ramp, squeeze..." may
 - potentially cause quenches (\rightarrow further delays)
 - will delay total commissioning till first collisions
- Experiences during LEP commissioning, Engineers In Charge (EIC¹):
 "Many beams lost during ramp due to absence of Orbit & Tune feedback"
 - un-anticipated movement of low-beta quadrupoles....
 - Let's learn from EIC experience:
 - \rightarrow Establish parameter measurement and feedbacks at an early stage!

Orbit Feedback

- Most advanced feedback¹, main "clients": Collimation & Machine Protection
- Measurement^{2,3} and correction scheme well established
 - successful SPS Prototype⁴
 - BPM available from early startup (required for threading the beam!)
 - Does not necessarily require LHC wide BPM/COD synchronisation (slow timing)
 - Either self-triggered @ 1-2 Hz or semi-automatic steering program (coded!)
 - For-free: minimises dynamic feed-downs due to moving orbit
 (e.g. moving orbit in sextupoles and coupling, many other snap-back related effects)
- Proposed baseline should and can be used at an early stage (circulating beam)
 → latest before ramping
- nominal performance (bandwidth $f_{bw} \approx 1Hz$, $\Delta x < 0.2 \sigma$) requires:
 - slow timing and beta-beat <20%, coupling is an issue

¹ J. Wenninger, "LHC Orbit Feedback Specification", available on request

² E.B. Holzer: "BDI Commitments and Major Issues for Individual Instrumentation" (this workshop)

³ H. Schmickler: "Running in the Diagnostics", Chamonix XIII

⁴ R. Steinhagen, "LHC Orbit Stabilisation Tests at the SPS", PAC05 & CERN-AB-2005-052

Energy Feedback I/II

Injection oscillation to estimate injection mismatch (Δp/p)_{ini}

- Robust measurement: BPM systematics on Δx_i and D_i cancel!
 - "no" high-precision calibration required
 - Moderate turn-by-turn acquisition $\Delta x \approx 200 \ \mu m$ (pilot) @ ~300 arc monitors
 - − Δp/p resolution ≈ few $10^{-6} \rightarrow$ sufficient for nominal operation! (COD hysteresis $\rightarrow \Delta p/p \approx 6 \cdot 10^{-7}$)
- Horizontal arc corrector dipole magnets used to adjust LHC energy

2

Energy Feedback II/II

- Later: Tide compensation (FF or FB possible) to optimise (preserve) aperture
- Minimal requirements for stage I:
 - BPMs:
 - BST (Beam synchronous timing) to trigger on injection of individual batch
 - Turn-by-turn acquisition should not affect (block) orbit acquisition
 - Orbit correction (FB) required to minimise non-dispersion orbit (2nd order effect)
 - someone who actually implements the algorithm in the front-end
- Could be used at an early stage (circulating beam)
 → latest before RF capture losses become an issue

- Traditional tune measurement method: kick and 'BPM 100k turn' acquisition
 - Emittance blow-up, not ideal for continuous feedback
 - Kick is an issue w.r.t. machine protection and collimation:
 Collimation Δx_{max} < 0.3 σ vs. desired kick Δx_{min} > 1mm ~ 1 σ
 - scrapes the beam!
 - \rightarrow move collimator out $\rightarrow~$ require dedicated low intensity runs
 - \rightarrow worse BPM performance & cycle-to-cycle reproducibility issues
 - backup solution on day 0: comes for free while threading the beam¹!
 - New method (BI baseline): Base-Band-Q Meter (BBQ)
 - Can measure tune <u>without</u> (or very small) excitation and resolution in the 10⁻⁴ range
 - Phase Look Loop to enhances S/N ratio of tune signal
 - 0.1 10 μ m level excitation (depending on beam noise level) \rightarrow negligible ϵ -blow up
 - Q-kicker rate limit: PLL-tune measurement @ < 2 Hz → sufficient for Stage I
 - \rightarrow The candidate for feedback use!

- Base-Band-Q Meter¹ (BBQ) available from day 0-1 (see R. Jones' talk on Tue.)
- Issues: Potential locking on
 - Synchrotron side bands, however: predicted error $\delta Q \sim 0.005 \rightarrow$ maybe OK for Phase I ?
 - Multiple of mains (50 Hz) signal, error $\delta Q \sim 0.002 \rightarrow OK$ for Phase I ?
 - $\hspace{0.1 cm} H/V\text{-coupling} \hspace{0.1 cm} (\text{issue @ HERA} \rightarrow \text{``BLL'' and RHIC}) \hspace{0.1 cm} \& \hspace{0.1 cm} coupled \hspace{0.1 cm} bunch \hspace{0.1 cm} modes^2$
 - Coupling control: pre-requirement for safe tune feedback during ramp

¹ M. Gasior, R. Jones, "The Principle and First Results of Betatron Tune Measurement [..]", LHC Proj. Rep. 853 ² S. Fartoukh, J.P. Koutchouk, "On the Measurement of the Tunes, [..] in LHC", LHC-B-ES-0009, EDMS# 463763

- Day 0 workhorse: Classic approach
 - Slow $\Delta p/p$ modulation and tune tracking:
 - Method used in LEP \rightarrow proven & robust¹
 - Requires moderate radio-frequency changes ($\Delta p/p \sim 10^{-4}$) and tune tracking
 - similar issues as tune feedback
 - May be enough to cope with snap-back and ramp induced b₃ drifts (at least during Phase I)
 - Day N new approach: Head-Tail-Chromaticity
 - Presently requires large kicks (ε blow-up, machine protection issues)
 - envisaged to move to a BBQ similar principle
 - \rightarrow continuous Q' measurement without notable ϵ blow-up
 - Requires time for commissioning and may be not available on 'day 0'!

Chamonix XV, Ralph.Steinhagen@CERN.ch, 2006-01-23

- Experiences from RHIC¹:
 - Coupling during ramp breaks tune (and other) feedbacks
 - potential quick-fixes: "no/stop feedbacks" during ramp
- PLL Coupling measurement exists² (R. Jones):
 - Info on unperturbed tunes Q_x and Q_y ideal for tune FB
 - Measures coupling amplitude |C_|as well as its phase locally
 - \rightarrow real-time data at the same rate as tune data
 - Common FB "Chicken-Egg-Problem":
 - 1. Measurement breakdown due to uncontrolled coupling/chroma.
 - 2. Feedback control breakdown due to failing measurement

My proposed solution: Control coupling (& chroma) before its measurement becomes an issue

¹P. Cameron et al.: "Advances towards the measurement and control of LHC Tune and Chromaticity", DIPAC'05
 ²R. Jones, P. Cameron, Y. Luo, "Torwards a Robust Phase Locked Loop Tune Feedback System", Brookhaven Nat. Lab., 18/21
 C-A/AP/#204, May 2005,

Tune-PLL & coupling

measurement scheme:

Coupling Feedback II/II

Tune and coupling measurement @ RHIC (will use FB this year!):

- Feedback might work assuming coupling due to many distributed sources (global optimisation)
- Coupling feedback not easy, hope to gain from RHIC experience
- Should have coupling feedback at an early stage (preferably before ramping)

- Which feedback first:
 - Coupling correction is a pre-requirement for FBs during ramp
 - Orbit: easiest to implement but not most important
 - Chromaticity: most important but not easiest feedback (requires tune!)
 - Energy FB is a logical consequence having a 100k turn acquisition
 - Tune FB is a logical consequence having a Q-meter (-PLL)
- Feedback priority list: Tune \rightarrow Chromaticity \rightarrow Orbit \rightarrow Energy
- Feedback list of "what's easiest to commission":

– 1 rd : Orbit	\rightarrow functional BPM system	$\rightarrow OK$
 1½: Energy 	\rightarrow consequence of 100k turn acquisition	$\rightarrow OK$
– 2 nd : Tune	\rightarrow functional Q-meter (-PLL)	ightarrow SOSO
– 3 rd : Chromaticity	$ ightarrow$ functional Q-meter and Δ f/f modulation	→ ? ?

Foresee time to commission feedbacks at an early stage

- Most instruments can be commissioned parasitically with first circulating beam
- Foresee semi-automatic control (measure→correct) implementations (poorman's feedbacks)
- Investment now (!!) will help later with and save time while ramping the beam

Conclusions

- Parameter stability requirements and perturbation predictions:
 - Need automated control of: Energy, Orbit, Tune, Chromaticity and Coupling
 - requirements scale rather with total beam intensity and beam energy
- Feedback are most useful and efficient at an early commissioning stage
 - Cope well with random effects and machine uncertainties
 - Parameter measurement is an issue
 - BPM system available at 'day $0' \rightarrow$ no problem for orbit and energy feedback
 - Tune, Chromaticity and Coupling are more difficult
 - Two reasons to use feedbacks at an early stage:
 - 1. Give EICs, operators, ... the time to take care of more important things
 - 2. Without control of coupling and chromaticity, Q/Q' measurements become an issue
- Santa-Claus Early LHC wish-list: operational PLL + coupling measurement
 - Tune and Q' feedback with $\Delta f/f$ modulation as a workhorse

Reserve Slides

• Current decay in main bends^{1,2} ($b_1 \& b_3$) and lattice quadrupoles (b_2):

	Main Dipoles			MQ	
	Δb1	Δa_1	Δa 2	Δb ₃	Δb ₂
Decay/Snap-back	0.78 ± 0.72	-0.75 ± 2.61	-0.01 ± 0.22	1.64 ± 0.42	1.68 ± 0.56

- ...LHC injection optics (v6.5, MAD-X)
 - Orbit (H/V): $\Delta x \approx 0.28 \cdot \sigma \cdot \Delta b_1(R)$ $\Delta x(y) \sim 0.2 \sigma$ \rightarrow • Energy: $\Delta p/p \approx 10^{-4} \cdot \Delta b_1(S) + tides \rightarrow$ Δp/p ~ 1.3·10⁻⁴ $\Delta Q_{x(y)} \approx 8.10^{-3} \cdot \Delta b_2(S)$ Tune(MQ): ΔQ ~ 0.014 \rightarrow $\Delta Q'_{x(y)} \approx 44(-39) \cdot \Delta b_3(S) \longrightarrow$ Chromaticity: $\Delta Q' \sim 62 - 70$ Δc_ ≈ 0.46 ·Δa₂(S) Coupling Δc ~ 0.005 \rightarrow • Coupling $\Delta c \approx 0.014 \cdot \Delta a_{2}(R)$ Δc ~ 0.003 \rightarrow
- + feed-downs of higher multipoles, energy, orbit ... depend on operational conditions
 - Tune³ $\Delta Q_{x(y)} \approx 0.06$
 - Coupling⁴ $\Delta c_{\sim} \approx 0.1$ (worst case)
- However it is unclear (lots of non-evident assumptions): static \leftrightarrow dynamic components
 - \rightarrow commissioning will show
- Machine intrinsic effects: Squeeze (raw uncorrected orbit drift ~ 30 mm)
- Environmental sources & machine element failures (ground motion, girder, cryogenics, ...)

¹L. Bottura, "Cold Test Results: Field Aspects", Proceedings of Chamonix XII, 2003
 ²L. Bottura, "Superconducting Magnets on Day I", Proceedings of Chamonix XI, 2002
 ³S. Fartoukh, J.P. Koutchouk, "On the Measurement of the Tunes, [..] in LHC", LHC-B-ES-0009, EDMS# 463763
 ⁴S. Fartoukh, "Commissioning tunes to bootstrap the LHC", LCC #31, 2002-10-23

Dynamic Perturbations vs. Requirements Summary

Exp. Perturbatio	ns:	Orbit [ʊ]	Tune [0.5·frev]	Chroma. [units]	Energy [Δp/p]	tau
Inj. Energy mismatch Moon/Sun Tides 1		0.25 0.14	0.0017 0.0009	~ 1.3 ~ 1.2	1.0E-4 5.0E-5	sev. days ~ 10 hours
Random Ground Motion 2		0.3 - 0.5	-	-	-	~ 10 hours
Decay/Snapback 3	b ₁ ≈0.75	0.11	0.0030		7.5E-5	~ 1200/100 s
	b₂ & b₃ MQ: b2≈1.7	0.03	_ 0.014	~ 70 – 140	-	
Ramp induced* 3	b ₁ ≈ 1.50	0.22	0.0019	~ 8	1.5E-4	Start of ramp
MCB Hysteresis 4		0.01	-	-	Xx	·
MCB/PC stability 5	±7mA/60A GeV	0.1	-	-		
β* Squeeze	0.5 mm misalign.	~ 30 mm	??	??	-	~ 1200 s

*assuming lin. Ramp at 10A/s, optimised ramp (7) reduces it by a factor ~16)

Requirements: 6

Pilot	Np≈ 5e9	± 1-2 mm	± 0.1	± 10	-
Stage I (43x43)	Np > 5e10	± 1.8 σ / 1 σ	± 0.015	± 1-10 ??	± 1e-4

1: J. Wenninger: "Observation of Radial Ring Deformation using Closed Orbits at LEP"

2: RST, "Analysis of Ground Motion at SPS and LEP, implications for the LHC", CERN-AB-XX (to be published)

3: M. Haverkamp, "Decay and Snapback in Superconducting Accelerator Magnets", CERN-THESIS-2003-030

- L. Bottura, "Cold Test Results: Field Aspects", Proceedings of Chamonix XII
- L. Bottura, "Superconducting Magnets on Day 1", Proceedings of Chamonix XI
- FQWG-Homepage: http://fqwg.web.cern.ch/fqwg/

4: W. Venturini: "Hysteresis measurements of a twin aperture MCB orbit corrector", 19th October 2005

5: Q. King, L. Ceccone: private communications

6: T. Wijnands, "Requirements for Real Time Correction of Decay and Snapback [...]", EPAC'00, Vienna, 2000

7: L. Bottura, "LHC Main Dipoles Proposed Baseline Current Ramping", LHC Project Report 172

"Analysis of Ground Motion at SPS and LEP, Implications for the LHC", AB Report 2005-087

2	LHC cleaning System:	< 0.3 σ	IR3,IR7
2	Machine protection & Absorbers:		
	 TCDQ (prot. asynchronous beam dumps) 	< 0.5 σ	IR6
	 Injection collimators & absorbers 	~ 0.3 σ	IR2,IR8
	 Tertiary collimators for collisions 	~ 0.2 σ	IR1,IR5
	 absolute numbers are in the range: ~100-200 μm 		
	Inj. arc aperture w.r.t. prot. devices and coll.: (estimated arc aperture 7.5 σ vs. Sec. Coll. @ 6.7 σ)	< 0.3-0.5 σ (??)	global
2	Active systems :		
	 Transverse damper, Q-meter, PLL BPM 	~ 200 µm	IR4
	 Interlock BPM 	~ 200 µm	IR6
	Performance :		
	 Collision points stability 	minimize drifts	IR1,2,5,8
	 TOTEM/ATLAS Roman Pots 	~ 10 µm	IR1,IR5
	 Reduce perturbations from feed-downs 	~ 0.5 σ	global
	 Maintain beam on clean surface (e-cloud) 	~ 1 o ??	global

... requirements are similar \rightarrow distinction between local/global less obvious!

- Border is rather fuzzy.... injection likely won't require RT-feedbacks
- S. Sanfilippo (SM18 Review): "Decay of these magnets not scalable yet."
 - b₃ & b₁ decay prediction:

random $b_3 \rightarrow$ negligible effect systematic $b_3 \rightarrow$ seem to be reproducible \rightarrow constant feed-forward function may be established at some point of time

random $b_1 \rightarrow perturbs$ orbit systematic $b_1 \rightarrow \Delta p/p$ shift

 \rightarrow both require feedback control for each fill

Low sensitivity to optics uncertainties = high disturbance rejection:

- Available aperture and collimation inefficiency w.r.t. β -beat is clearly more an issue
- Similar for BPM and COD calibration constants (hysteresis, see later talk)

- Induced noise on orbit¹:
 - BPM failure (undetected electronics drift):
 - BPM systematic (intensity, bunch length, 450 Gev):
 - White BPM noise (single bunch):
 - ÇOD power converter ripple (~7mA/55A):
 - COD circuit failure (e.g. quench):

```
\begin{split} \Delta x|_{max} &< 0.01 \; (\beta_{min}) \; / \; 0.4 \; \sigma \; (\beta_{max}) \\ \Delta x|_{max} &< 0.02 \; (\beta_{min}) \; / \; 0.01 \; \sigma \; (\beta_{max}) \\ \Delta x|_{max} &< 10^{-3} \; \sigma \; (inj) \; / \; 0.02 \; \sigma \; (coll) \\ \Delta x|_{max} &< 0.1 \; \sigma \; \end{bmatrix} \end{split}
```

- $\Delta x|_{max} \sim 0.8 \sigma$
- \rightarrow compatible with nominal \rightarrow should not pose problems for Stage I++
 - Some comments:
 - BPM resolution scales reciprocal with collimation requirement
 - Increased number of bunches
 - \rightarrow Tighter collimation tolerances
 - \rightarrow better BPM resolution Δx :

$$\Delta x = \frac{1}{\sqrt{N_{turns}} \cdot N_{bunch}} \sum_{iurns}^{N_{turns}} \sum_{iurns}^{N_{bunch}} \Delta x_{turn}$$

(Nominal performance: beta-beat < 20 %, reasonable BPM calibration)

Technical implementation:

- Simple streaming task for all feed-forwards/feedbacks:
 - (Monitor \rightarrow Network)_{FB} \rightarrow Data processing \rightarrow Network \rightarrow PC-Gateways
- Feed-forward/Feedback choice mainly depends on available measurement
- Assumption on hardware present during startup of commissioning with beam:
 - General infrastructure (network, databases, controls software....)
 - Corrector circuits with rough (~20%) calibration and correct polarity
 - Either: beam diagnostics or: good model for the to be steered parameter
 - Timing on second level sufficient

