

Closed Orbit and Protection

Ralph J. Steinhagen

Accelerators & Beams Department, CERN and 3rd Physics Institute, RWTH Aachen

- Combined failures: Local Orbit Bumps + Fast Failure
- Aperture Scans
- Indicator to check aperture Scans are required
 - Anticipated orbit uncertainties during operation
- Some issues concerning ramp, squeeze and physics
- Feedback a source of orbit bumps?

Closed Orbit Definition

Closed Orbit x_{co}: Single stable trajectory that maps the particle phase space coordinate on itself after each revolution in the machine.

$$\begin{pmatrix} x_{co} \\ \dot{x}_{co} \end{pmatrix}_{s} = \begin{pmatrix} x_{co} \\ \dot{x}_{co} \end{pmatrix}_{s+C}$$

All higher particles (/bunches) oscillate around x_{co} : $x(s) = x_c$

$$x(s) = x_{co}(s) + x_{\beta}(s)$$

$$x_{\beta}(s) = \sqrt{\varepsilon \beta(s)} \cdot \sin(\mu(s) - \phi_0)$$

- Twiss parameter: β: beta function, μ : phase advance, C: circumference, Initial conditions: ε: particle emittance, ϕ_0 : initial particle phase

Tracking Example: LHC arc

Beam Size Definition

Collective particle oscillation \rightarrow beam size

$$\sigma(s) = \sqrt{\varepsilon \beta(s)} = \sqrt{\frac{\varepsilon_n}{\gamma}} \beta(s)$$

- LHC: Typical max r.m.s. beam sizes in the arc: (norm. emittance@injection: ε_n≈3.5 μmrad, beta-function: β≈180 m)

•
$$\sigma_{450GeV} \approx 1.14 \text{ mm resp.}$$
 $3\sigma_{450}$

Assuming Gaussian distribution: $1\sigma \approx 68.3\%$ protons/bunch $3\sigma \approx 99.7\%$ protons/bunch nominal bunch intensity: $3 \cdot 10^8$ particles are > 3σ

Closed Orbit drifts...

- <u>alone</u> are unlikely to cause damage to the machine
 - Expected drift velocities are slow: < 2 σ/s
 - Easily detectable and captured through beam loss monitors
 - independent on whether they are local or global drifts
- However, combined failures are an issue:
 - "local orbit bump" + fast other failure, e.g.:
 - Single turn failure involving injection, extraction or aperture kicker
 - fast magnet field decays
 - reduction of alignment margin at local protection devices
 - TDIs, TCDQs, Collimators etc.
- Local orbit bumps may compromise passive protection properties of absorbers and collimators for machine protection!

Example: Protection against Single Turn Failures

- TI8/TI2 collimators limits $|x_{\beta}(s)|_{max} < 5 \sigma$, TDI (locally) limits $|x_{\beta}(s)|_{max} < 7 \sigma$
 - Perfect matching: beam circulates on closed orbit & $\epsilon_{TI8/TI2} = \epsilon_{ring}$
 - $\Delta x, \Delta x'$ /optics mismatch: \rightarrow oscillation around x_{co} & filamentation $\epsilon_{ring} > \epsilon_{TI8/TI2}$
 - But: $\sigma_{ring} < 7 \sigma$ globally (if proper TDI setup)
 - TDI shadows critical machine aperture
 - "Ring aperture is safe", assuming only single turn (injection) failures.

- TI8/TI2 collimators limits $|x_{\beta}(s)|_{max} < 5 \sigma$, TDI (locally) limits $|x_{\beta}(s)|_{max} < 7 \sigma$
 - TDI does potentially not shadow sensitive equipment
 - → Orbit bumps may compromise function of absorbers for protection if beam is closer to the aperture than to TDI

- Primary collimator (TCP) limits $|x_{\beta}(s)|_{max}$ locally to <5.7 σ , secondary collimator (TCS) at~ 6.7 σ
- To guarantee two stage cleaning efficiency/machine protection:
 - Local: TCP must be >0.7 σ closer than TCS w.r.t. the beam \rightarrow Orbit FB
 - Global: no other object (except TCP) closer to beam than TCS
 - \rightarrow Orbit bumps may compromise function of collimation if beam is closer to the aperture than to jaws!

Two methods to establish whether the closed orbit is within 6.7σ of the available mechanical resp. dynamic aperture:

- Yes: \rightarrow mechanical aperture \geq 6.7 $\sigma \rightarrow$ orbit is safe
- No: \rightarrow mechanical aperture $\leq 6.7 \sigma \rightarrow$ orbit is un-safe
 - rework orbit reference (compare with old reference....)

Scan using two COD magnets (currents: $I_1 \& I_2$) with π phase advance:

- Scan I_{max}/φ:
 - $\phi = 0 \rightarrow 2\pi$ (takes ~25 second @ 7 σ , due to COD power converter speed)
- Increase amplitude (COD currents) till orbit shift corresponds to 6.7σ
- Loss does not exceed predefined BLM threshold if COD settings@ 6.7σ:
 - Yes: \rightarrow mechanical aperture \geq 6.7 $\sigma \rightarrow$ orbit is safe
 - No: \rightarrow mechanical aperture $\leq 6.7 \sigma \rightarrow$ orbit is un-safe
- additional feature: compare measured with reference BPM step response ($x_{co} = 0.3\sigma$)
 - \rightarrow rough optics check (phase advance and beta-functions)

Controlled emittance blow-up:

- may check both planes at the same time
- relatively fast measurement
- reliability/robustness of beam size measurement/blow-up is an issue
- no information on injection optics
- Tests rather dynamic than mechanical aperture if a_{dyn} < a_{mech}
- Destructive measurement
 - beam has to be dumped after scan
 - cannot be used for collimator setup
 - increased beam loss during extraction
 - Both methods:
 - Determine the available aperture
 - should be performed with low-intensity beams
 - need time and exclusive control of the machine
 - in order to minimise the need for too frequent aperture scans:
 - \rightarrow perform above checks only when exceed given window

- Betatron oscillation scan:
- non-destructive measurement
 - (could be done to check during each injection)
- rough information on injection optic
- Independent information on planes
- checks only one plane at a time
- What to do if on COD is down?
 - spares: longer measurement
- requires ~30 s for a scan at 7σ
- Required:
 - inhibit injection during scan
 - COD setting reset after scan

Beam Position Monitors:

- Procedure:
 - A: Initial check whether Orbit is safe:
 - aperture scan (ε blow-up, betatron-oscillation)
 - Potential bump scans to determine location of aperture
 - save "safe BPM reference" current settings $\rightarrow x_{ref}$ = "SAFE SETTING"

B: Check:

- if ($|x_{meas.} x_{ref}| < \Delta x_{tol}$) {...}
- FALSE: potential orbit bump detected
- TRUE: Orbit is safe

yes

- Pro's:
 - Easy to check with circulating beam
 - Less dependent on machine optics
 - Sensitive to most orbit manipulations
- Con's:
 - erroneous BPMs
 - No information before injection
 - Bunch intensity systematics (gain settings) and change of BPM calibration
 - Potential cross-talk with orbit feedback

no

Magnet Current Surveillance I/II

- Proposed Procedure:
 - A: Initial check whether Orbit is safe:
 - aperture scan (ε blow-up, betatron-oscillation)
 - Potential bump scans to determine location of aperture
 - Save "safe COD reference" current settings \rightarrow I_{ref}(...) = "SAFE SETTING"
 - B: Each cycle:
 - Compare with actual current reference I_{meas}(..):

if $(|I_{meas}(..) - I_{ref}(...)| \le \Delta I_{tolerances}) \{...\}$

- FALSE: Orbit may contain potential bumps \rightarrow State A
- TRUE: Orbit can be considered to be safe \rightarrow State B

- Current Surveillance:
 - Pro's
 - Can be used to check even before first injection
 - Can run continuously with orbit feedback in operation
 - Con's
 - Less sensitive to complicated orbit bumps
 - No precise&simple ' $\Delta I \rightarrow \Delta x$ ' transfer function available
 - depends on machine optic, energy
 - CODs create not only bumps but compensate
 - » ground motion,
 - » decay & snap-back,
 - » multipole field errors, ..
- \rightarrow Current tolerance level $\Delta I_{tolerances}$ ("SAFE SETTINGS") should include margin for
 - orbit feedback operation
 - expected compensation of closed orbit uncertainties = "natural effects"

LPR501 specification¹:

– nom.: (Δp/p) _{max} ≈ 10 ⁻⁴	0.25 σ (MD: max ≈ 3.7 σ)
− $b_2 + b_3 \cdot \Delta x$ decay: $(\Delta \beta / \beta)_{3\sigma} \approx 2.5\%$	0.03 σ
Moon/sun tides ² ($\Delta p/p \le 5.0 \cdot 10^{-5}$)	0.14 σ
Main Bends, random b ₁ ≈0.75 units ³⁴ (dipole kick)	0.11 σ
Random ground motion ⁵ (10 hours)	~0.3 − 0.5 σ
Systematic ground motion drifts:	~?? σ
MCB hysteresis ⁶	0.01 σ
MCB ±8V/±60A PC stability ⁷ (16bit ADC)	0.10 σ
Total (abs):	~0.9 - 1.1 σ (max: 4.6 σ)

- 1: M. Giovannozzi: FQWG Meeting on 8^{th} of March 2005
- 2: J. Wenninger: "Observation of Radial Ring Deformation using Closed Orbits at LEP"
- 3: M. Haverkamp, "Decay and Snapback in Superconducting Accelerator Magnets", CERN-THESIS-2003-030
- 4: FQWG-Homepage: http://fqwg.web.cern.ch/fqwg/
- 5: RST: "Analysis of Ground Motion at SPS and LEP, implications for the LHC", AB note to be published
- 6: W. Venturini: "Hysteresis measurements of a twin aperture MCB orbit corrector", 19th October 2005
- 7: Q. King, L. Ceccone: private communications

- Mechanical aperture: $N_a = n \sigma$ (e.g. n=7.5)
- Deductions:
 - Collimation: 6.7σ
 - Momentum correction
 - Known uncertainties: 1.1 σ
 - Unknown: ~?? σ
- safe window for dynamic closed orbit modifications: ~ "- 0.3 σ "???
 - Evident: aperture check required!
- Possible MCB tolerance levels:
 - ... 1 σ orbit excursion using CODs one needs e.g.:
 - All CODs with a r.m.s. kick of ~ 1.4 μ rad \leftrightarrow ~ 0.07
 - 3COD bump: $2x \sim 12 (-0.1) \mu rad \leftrightarrow$

≈ 0.07 A@450 GeV
≈ 0.5 (0.05)A@450 GeV

- \rightarrow Vicious bump: smaller strengths and larger local displacement possible!
- − ... 1 σ orbit excursion through dispersion one needs ($\Delta p/p \approx 4 \cdot 10^{-4}$):
 - Coherent shift of all MCBH CODs ≈ 0.5 A@450 GeV
- \rightarrow MCB current change of 0.5 A is likely to cause a orbit bump/shift of 1 $\sigma.$

- Scheme may be extended through the ramp till squeeze:
 - Similar effects as in injection that perturb the orbit dynamically:
 - Snapback (= inverse of Decay), ground motion,...
 - But: effect of each dipole (deflections) depends on energy:
 - Interlock window and its centre has to be scaled with energy:
 - = 0.5 A/ $\sigma_{_{orbit}}$ @450 Gev \rightarrow 7.8 A/ $\sigma_{_{orbit}}$ @7 TeV
 - Continuation through β^* -Squeeze seems to be tricky:
 - CODs do not compensate only ground motion/decay
 - Squeeze induced orbit shifts due to systematic (mis-)alignment of the orbit inside the insertion quadrupoles. If not corrected:
 - Squeeze induced orbit drift up to 30 mm \leftrightarrow 100 $\sigma!$
- \rightarrow No simple window to subtract squeeze induced COD changes from those creating bumps.

Preliminary Conclusions

- Closed Orbit drifts alone are unlikely to cause fast particle losses.
- But may become an issue through combined failures:

(all fast failures occur around the closed orbit)

- local orbit bumps + fast kicker failure
- local orbit bumps + collimation efficiency
- Aperture scan to check whether orbit containing potential bumps is safe:
 - Controlled emittance blow-up
 - Betatron-oscillation using closed orbit correction dipoles
- Both methods can only be performed with low-intensity beam at 450 GeV
 - Indicators available to check whether aperture scan is required:
 - Using BPMs (direct) & Surveillance of COD currents (indirect)
 - Continuation of scheme through ramp needs refinement (β*-squeeze not obvious!)
- Orbit manipulations within 0.8 σ seem to be safe (arc: $\Delta x < 1 \text{ mm} \otimes \beta = 180 \text{ m}$).
 - Very tight: Should be checked during early LHC operation.

- LHC Orbit feedback:
 - Does not find optimal orbit!
 - Minimises orbit perturbation around predefined reference
 - Runs continuously from ~ 100 ms after first injection till beam dump
 - However:

- Feedback may potentially create bumps in case of false BPM readings or wrong orbit reference settings.
- \rightarrow To be robust, the feedback is designed to be insensitive to COD/BPM failures:
 - Closed Orbit Dipole (COD) failures \rightarrow see MPWG meeting #46
 - BPM:
 - Double sampling w.r.t. betatron oscillations
 - Detect BPM failures at an early stage
 - Eliminate per construction corrections that potentially may create bumps

LHC BPM Prototype in the SPS:

- Most common: acquisition failure = no orbit info available and spikes
 - Short term (few ms-s): Zero Order Holder (ZOH)
 - Long term: Disable BPM in feedback and recalculate SVD pseudo-inverse matrix
- Only a few drifts observed: systematic on bunch length & bunch intensity
 - within 1% of BPM half aperture \leftrightarrow 250 μm (complies with specification)

Ŗ

- 1. BPM phase advance of $\sim \pi/4$:
 - Twice the sampling than minimum required to detect β -oscillation
 - Distribution of consecutive BPMs on different front-ends (minimise impact of front-end drop outs)
- 2. Detection of erroneous BPM failures (SPS: mostly spikes)

(x_i(n)=position at ith monitor, n: sampling index; σ_{orbit} = residual orbit r.m.s.)

- Reject BPM if the following applies:
 - Cuts in Space Domain:
 - $x_i(n) > machine aperture$
 - $x_i(n) x_{i,ref} > 3 \cdot \sigma_{orbit}$
 - possible: interpolate position from neighbouring BPMs (implemented in APS)
 - (BPMs marked by the front-end itself)
 - Cuts in Time Domain:
 - $\Delta x_i(n) = x_i(n) x_i(n-1) > 500 \ \mu m/s$ Spike detection!(BPM noise < 20 \ \mu m and ofb@25Hz assumed)
 - filters to reduce noise (e.g. low integrator gain)
 - ...
- Difficult to detect coherent, very slow or systematic drifts

(e.g drift of BPM electronics vs. systematic ground motion, temperature drifts, tides... etc.)

3. Use SVD based correction \rightarrow less sensitive to BPM errors

- Global orbit feedback with local constraints
 - Based on SVD algorithm \rightarrow see attachment for details
 - Expands orbit using orthogonal "eigen-orbits"
- Important mathematical properties:
 - SVD minimises orbit & deflection strengths
 - Uses rather many CODs with small than few with large kicks
 - Solutions are sorted by their 'effectiveness': large eigenvalues λ_i (solutions) first
 - Local 'bump-like' solutions corresponds to small eigenvalues
 - "number of used eigenvalues" $\#\lambda_{svd}$ controls OFB robustness vs. precision
 - more #eigenvalues \rightarrow more precise correction (collimation requirement)
 - less #eigenvalues \rightarrow more robustness against BPM & optic failures
 - discard deliberately solutions with small eigenvalues (=local bumps)
 → SVD cannot generate (= correct) those bumps
 - However: Will use all (local SVD) eigenvalues regions like collimation.
 (due to precision requirement)

MPWG meeting #53, Ralph.Steinhagen@CERN.ch, 2005-12-16

Robustness Examples

- Propagation of single (arc) BPM failure with $x_i(n) < 3 \cdot \sigma_{orbit} < \sigma_{beam}$
 - #λ≈250: < 40% (β ≈ 175m) resp. < 10% (β ≈ 39 m)</p>
- Propagation of random (white) noise on all BPMs
 - − 30% (worst case # λ =529) resp. 10% (OFB operation with # λ ≈250)
- BPM induced noise on orbit (single bunch):
 - Single BPM failure: $< 0.01 0.4 \sigma$ - White BPM noise: $< 0.001 \sigma$ (inj) resp. 0.02 σ (coll)

Conclusions

- Closed Orbit drifts alone are unlikely to cause fast particle losses.
- But may become an issue through combined failures:

(all fast failures occur around the closed orbit)

- local orbit bumps + fast kicker failure
- local orbit bumps + collimation efficiency
- Aperture scan to check whether orbit containing potential bumps is safe:
 - Controlled emittance blow-up
 - Betatron-oscillation using closed orbit correction dipoles
- Both methods can only be performed with low-intensity beam at 450 GeV
 - Indicators available to check whether aperture scan is required:
 - Using BPMs (direct) & Surveillance of COD currents (indirect)
 - Continuation of scheme through ramp needs refinement (β*-squeeze not obvious!)
- Orbit manipulations within 0.8 σ seem to be safe (arc: $\Delta x < 1 \text{ mm} \otimes \beta = 180 \text{ m}$).
 - Very tight: Should be checked during early LHC operation.
- Orbit Feedback designed to be less sensitive to COD/BPM faults and errors
 - Expected single BPM failure propagation: < 0.01 0.4 σ (σ ~1.1 mm @450 GeV & β = 180 m)

reserve slides

- closed orbit dipole magnets
- Misalignments ($\Delta x \approx 0.3...0.5$ mm r.m.s) and ground motion:
 - Main quadrupole magnets: $\delta_0 = \mathbf{k} \cdot \Delta \mathbf{x}$
 - (strong multipole magnets: $\delta_0 = m_n \cdot (\Delta x)^n$)
- Typical COD orbit response in LHC arcs (β≈170 m, Q_x≈64.28, Q_y≈64.31):

 $\Delta x_{co}[\mu m] \leq 110 \cdot \delta_x[\mu rad]$ $\Delta y_{co}[\mu m] \leq 100 \cdot \delta_y[\mu rad]$

or:
$$\begin{aligned} \Delta x_{co}[\sigma] \leq 0.10 \cdot \delta_x[\mu \, rad] \\ \Delta y_{co}[\sigma] \leq 0.09 \cdot \delta_y[\mu \, rad] \end{aligned}$$

Closed Orbit Perturbations

- Dispersion D(s):
 - Insertions: D_{x/y}(s)≈ 0
 - LHC arcs: D_y(s) ≈ 0...0.1 m resp. D_x(s) ≈ 1...2 m
 - − At dispersion suppressors: $D_x(s)|_{max} \approx 2.8 \text{ m}$

$$-\frac{\Delta p}{p}$$
 typically: 10⁻⁴ ... 10⁻³

Two classes of ground motion:

- Correlated ground motion waves: 'Cultural Noise', ocean swelling, tidal waves, ...
 - − Assuming visibility threshold of 1 μ m and κ ≈1000
 - \rightarrow coherent ground motion negligible above 1 Hz

- Random ground motion (Brownian motion):
 - amplitudes increases with $\sim \sqrt{t}$
 - LEP and SPS based measurements:

$$\sigma_{ground}[\mu m] \approx 5 - 6 \cdot 10^{-2} \left[\frac{\mu m}{\sqrt{s}} \right] \cdot \sqrt{t}$$

– Propagation of random ground motion onto orbit r.m.s. σ_{beam} :

$$\sigma_{\textit{beam}}[\mu \, m] = \kappa \cdot \sigma_{\textit{ground}}[\mu \, m]$$

• LHC injection optics:

 $\kappa_{_{\rm H}}\text{=}30.5{\pm}11.5$ and $\kappa_{_{\rm V}}\text{=}29.6{\pm}9.0$

• LHC collision optics:

 $\kappa_{_{\rm H}}\text{=}63.3{\pm}32.5$ and $\kappa_{_{\rm V}}\text{=}62.1{\pm}25.5$

"Analysis of Ground Motion at SPS and LEP, Implications for the LHC", AB Report to be published

Relative energy shift Δp/p depends on the main dipole field stability:

$$\frac{\Delta p}{p} = \frac{\Delta B}{B} = 10^{-4} b_1 \quad [units]$$

- Decay&Snapback
 - Systematic component: b₁ ≈ 2.6 units (corrected by feed-forward)

 $\rightarrow \Delta x = D_{max} \cdot \Delta p/p \cdot = 728 \ \mu m \approx 0.64 \ \sigma$

• Random component: $b_1 \approx 0.75$ units

 \rightarrow random dipole kicks: $\Delta x \approx 126 \ \mu m \approx 0.11 \ \sigma$

Moon/sun tides change the geometric circumference of the machine:

$$\frac{\Delta p}{p} = -\frac{1}{\alpha_p} \cdot \frac{\Delta C}{C}$$

− LHC: Δ C ≈ ± 0.5 mm, momentum compaction factor α_p = 3.2·10⁻⁴

•
$$\Delta p/p \approx 5.8 \cdot 10^{-5}$$

 $\rightarrow 2\Delta x = 2 \cdot D_{max} \cdot \Delta p/p \cdot = 326 \ \mu m \approx 0.29 \ \sigma$

- Orbit Correction will consist of two steps (which may alternate repetitively):
 - Initial setup: "Find a good orbit" (mostly feedback "off")
 - establish circulating beam
 - compensate for each fill recurring <u>large</u> perturbations:
 - static quadrupole misalignments
 - static magnetic dipole field imperfections
 - partially: decay & snapback, ramp, ...
 - ..
 - tune for optimal orbit
 - keep aperture limitation
 - rough jaw-orbit alignment in cleaning insertions
 - Squeeze: minimise the effect of the squeeze due to non-centred beam in IR1 & IR5 quadrupoles (esp. final-focus triplets)
 - \rightarrow reference orbit
 - During fill: "Stabilise around the reference orbit" (feedback "on"):
 - correct for small and random perturbations Δx
 - environmental effects (ground-motion, girder expansion, ...)
 - compensate for residual decay & snapback, ramp, squeeze
 - optimise orbit stability at collimator jaws/roman pots.

The superimposed beam position shift at the ith monitor due to single dipole kicks is described through the orbit response matrix <u>R</u>. It can be written as

$$\Delta x_{i} = \sum_{j=0}^{n} R_{ij} \cdot \delta_{j} \quad with \quad R_{ij} = \frac{\sqrt{\beta_{i}\beta_{j}}}{2\sin(\pi Q)} \cdot \cos(\Delta \mu_{ij} - \pi Q)$$

$$\Leftrightarrow \quad \Delta \vec{x} = \sum_{j=0}^{n} \delta_{j} \vec{u}_{j} \quad with \quad \vec{u}_{j} = (R_{1j}, \dots, R_{mj})^{T} \Leftrightarrow \quad \Delta \vec{x}(t) = \underline{R} \cdot \vec{\delta}_{ss}$$

where (β,μ,Q) depends on the machine optic (example: Q=4.31).

Task in space domain:

Solve linear equation system and/or find (pseudo-) inverse matrix R⁻¹

$$\left\|\vec{x}_{ref} - \vec{x}_{actual}\right\|_2 = \left\|\underline{R} \cdot \vec{\delta}_{ss}\right\|_2 < \epsilon \rightarrow \vec{\delta}_{ss} = \tilde{R}^{-1} \Delta \vec{x}$$

Singular Value Decomposition (SVD) is the preferred orbit feedback workhorse:

standard and proven eigenvalue approach

insensitive to COD/BPM faults and their configuration (e.g. spacing)

•minimises orbit deviations and COD strengths

•numerical robust:

guaranteed solution even if orbit response matrix is (nearly) singular

(e.g. two CODs have similar orbit response \leftrightarrow two rows are (nearly) the same)

easy to identify and eliminate singular solutions

high complexity:

- Gauss(MICADO): $O = \frac{1}{2} mn^2 + \frac{1}{6} n^3$
- SVD: O= 2mn²+4n³

m=n: SVD is 9 times more expensive, even on high-end CPUs full initial decomposition may take several seconds (LHC: ~15 s/plan), but once decomposed and inverted: simple matrix multiplication (O(n²) complexity, LHC: ~15ms!)

Theorem from linear algebra*: "It is always possible to decompose a orbit response (real) matrix into a set of orthonormal BPM and COD eigenvectors" $\underline{n \times COD}$

eigen-vector relation:

 $\lambda_i \vec{u}_i = \underline{R} \cdot \vec{v}_i$ $\lambda_i \vec{v}_i = \underline{R}^T \cdot \vec{u}_i$

final correction is a simple matrix multiplication

large eigenvalues \leftrightarrow bumps with small COD strengths but large effect on orbit

$$\vec{\delta}_{ss} = \tilde{R}^{-1} \cdot \Delta \vec{x} \text{ with } \tilde{R}^{-1} = \underline{V} \cdot \underline{\lambda}^{-1} \cdot \underline{U}^T \iff \vec{\delta}_{ss} = \sum_{i=0}^n \frac{a_i}{\lambda_i} \vec{v}_i \text{ with } a_i = \vec{u}_i^T \Delta \vec{x}$$

Easy removal of singular (=undesired, large corrector strengths) eigen-values/solutions:

- near singular eigen-solutions have $\lambda_i \sim 0$ or $\lambda_i = 0$
- to remove those solution: $\lim \lambda_i \rightarrow \infty 1/\lambda_i = 0$
- discarded eigenvalues corresponds to bumps that won't be corrected by the fb

*G. Golub and C. Reinsch, "Handbook for automatic computation II, Linear Algebra", Springer, NY, 1971

Eigenvalue spectra for vertical LHC response matrix using all BPM and COD:

Gretchen Frage: "How many eigenvalues should one use?"

low number of eigenvalues:

- (e.g. ~20% of total # e-values)
- more global type of correction:
 - use arc BPM/COD to steer in crossing IRs
 - less sensitive to BPM noise
 - less sensitive to single BPM faults/errors
 - less sensitive to single COD/BPM faults/errors
- robust wrt. machine imperfections:
- beta-beat
- calibration errors
- easy to set up
- ...
- poor correction convergence
- leakage of local perturbations/errors
 - not fully closed bump affects all IRs
 - squeeze in IR1&IR5 affects cleaning IRs

high number of eigenvalues:

(still without using singular solutions)

- more local type of correction
 - more precise
 - less leakage of local sources onto the ring
 - perturbations may be compensated at their location
- good correction convergence
- ≥.
- more prone to imperfections
 - calibration errors more dominant
 - instable for beta-beat > 70%
- more prone to false BPM reading
 - Errors & faults
- a ..

orbit stability requirement feedback stability requirement

- The orbit and feedback stability requirements vary with respect to the location in the two LHC rings. In order to meet both requirements:
 - Implement robust global correction (low number of eigenvalues)
 - fine local correction where required (high number of eigenvalues or simple bumps):
 - Cleaning System in IR3 & IR7
 - Protection devices in IR6
 - TOTEM

<mark>#λ large</mark>#λ large + + #λ small

coarse global SVD with fine local "SVD patches" (no leakage due to closed boundaries)

minor disadvantage: longer initial computation (global + local SVD + merge vs one local SVD)

BPM·ω BPM·ω

coarse global SVD with weighted monitors where required ($\omega = 1 \dots 10$)

disadvantage: •total number of to be used eigenvalues less obvious •Matrix inversion may become instable

uncorrected

free orbit manipulation (within limits) while still globally correcting the orbit