

LHC Status and Beam Stabilisation

Ralph J. Steinhagen

Accelerators & Beams Department, CERN and 3rd Physics Institute, RWTH Aachen

LHC = Large Hadron Collider

- 27 km circumference, depth ~ 100 m
- accelerates two positively charged beams
 - \rightarrow two machines in the same tunnel
 - \rightarrow more bunches per beam possible
 - eight-fold symmetry
 - four crossing insertions
 - parameters for physics
 - p-p collisions at
 - E_{cms} = 14 TeV (E_{beam}= 7 TeV)
 - nominal L = 10³⁴ cm⁻² s⁻¹
 - Pb-Pb:
 - E_{cms} = 1148 TeV
 - nominal L= 10²⁷ cm⁻² s⁻¹

LHC status

- Technical stop in 2005
 - maintenance of the machines
 - PS dipole magnets are
 ~ 50 years old
 - 25% of coils preventively being replaced (radiation damage)
 - Restart of PS and SPS in 2006
 - Commissioning of CNGS beam line (CERN Neutrinos to Gran Sasso)

- All accelerator operation will move to CERN's Common Control room (CCC, on the Prevessin site. includes: Linacs, Booster, PS, SPS, TS, cryogenics ... (and later LHC) operation)

Installation schedule

- LHC cryogenics and magnets installation in time
 - Status in August 2005: 1000/1650 main magnets arrived
- Hardware commissioning started for some systems
- Beam commissioning followed by physics program expected in 2007

Status of LHC Injectors

- injectors can produce beam with nominal parameters (emittance, intensity)
- successful tests of:
 - LHC style beam diagnostics and feedbacks
 - TI8 transfer lines down to the LHC tunnel in 2004
 - first extraction → first controlled hit on the dump (only 300 m away from LHC

zoom

Beam profile @ dump

• compared to other present and previous colliders

		Hadron machinesLHCTevatron 2a		Lepton machines LEP KEKB		
Energy	[GeV]	7000 x 7000	980 x 980	105 x 105	8 x 3.5	
Luminosity	[cm-2 s-1]	1e34	1e32	1e32	1.4e34	
σx x σy @ IR	[µm x µm]	17 x 17	30 x 30	200 x 2	77 x 2	
Circumference	[km]	26.7	6.3	26.7	3.0	
Number of bunches		2808	36	4	1294*	
Bunch spacing	[ns]	25	396	22e3	~8*	
Particles pb	[1e10]	12	30/8	50	6/2	
Max. stored energy	[MJ]	350	1.6	0.04	0.1	

- main challenges for the LHC:
 - beam energy and magnet technology (control of field errors)
 - control of particle loss in superconducting environment
 - control of instabilities and dynamic effects

(electron cloud, beam-beam, decay/snapback, orbit, final focus squeeze, dynamic aperture, ...)

- Maximum beam energy given by max. main dipole strength (first order)
- LHC: E_{beam} = 7 TeV: B_{max} = 8.33 Tesla \rightarrow superconducting magnets
 - Energy loss into magnet is inevitable in an accelerator environment
 - Loss of superconducting state if particle loss exceeds limits (minimum quench energy E_{MQE} , loss density N_{loss} , time scale @7 TeV: 10 20 ms)

 E_{MQE} < 30 mJ/cm⁻³ resp. N_{loss} < 10⁸ protons/m

- nominal LHC: E_{stored} = 350 MJ/beam resp. N_{total} ~ 3 10¹⁴ protons
- sufficient to quench all magnets and/or to cause serious damage

25 cm long hole in the vacuum pipe of QTRF in TT40

Controlled damage tests: 2 mm Cu plate after ~5 cm of material (Zn, Cu, INCONEL, 316L "sandwich")

details see: Chamonix XIV: "Damage levels - Comparison of Experiment and simulation" and PAC'05

- normal conducting magnets: field quality mainly given by pole shape quality (iron saturates above ~2 T)
- Field stability of superconducting magnets given by coil design, its mechanical stability and powering
 - main dipole magnet have non-negligible higher multipole momenta
 - Main source for optic mismatch
- Intend to measure all magnets @1.6 K 2.50 dynamic multipole components startinjection start ramp **Decay & Snapback** 2.00 (main dipole magnets dominant) 1.50 o3 (sextupole) [units @ 17mm] \rightarrow requires active control 1.00 Fill-to-fill feed-forwards .50 Feedbacks 0.00 Decay Snapback Bottura courtesv -0 5 0 200 400 600 800 1000 1400 1200 time [s] 7/22

Accelerator Fundamentals

- Charged particle perform transverse betatron oscillations in an circular accelerator with circumference C (x = (x,y), q charge, p momentum)
- Hill's equation (1st order only):

$$\frac{d^2 x(s)}{ds^2} \pm k(s) x(s) = 0$$

- k(s) quadrupole gradient (focusing in one de-focusing in the other plane → "±")
- periodic solution k(s)=k(s+C):

(only numerically solvable)

$$x(s) = \sqrt{\epsilon \beta(s)} \cdot \cos(\mu(s) + \phi)$$

- Beta-function $\beta(s)$ defined by location and strength k(s) of quadrupoles
 - Beta-function $\beta(s)$ and phase advance $\mu(s)$

(constants: emittance: ϵ and initial phase: $\phi)$

• beam size:

$$\sigma(s) = \sqrt{\frac{\epsilon \beta(s)}{\gamma_{rel}}}$$

tune Q = number of oscillations per turn:

Example: LHC Optics around IR5 (CMS)

Storage ring design:

- $L = \frac{N^2 k f_{rev}}{4\pi \sigma_x \sigma_v} \cdot e^{-\frac{1}{4} \left[\left(\frac{\Delta x}{\sigma_x} \right)^2 + \left(\frac{\Delta y}{\sigma_y} \right)^2 \right]} \cdot F_{crossing} \cdot F_{hour \, glass} \cdot \dots$ LHC **Tevatron** $N_{\text{pilot}} = 5 \ 10^9, \ N_{\text{nominal}} = 12 \ 10^{10}$ $N_{p}=30\ 10^{10}$ *N*: number of particles per bunch, - k: total number of bunches, *k* = 1 ... 2808 k = 36 $\sigma_x = \sigma_v \sim 17 \ \mu m$ $- \sigma_x, \sigma_v$: hor./vert. r.m.s. beam size in IR σ_x=σ_y~30 μm $f_{rev} = 11.2 \text{ kHz} \text{ (fixed)} \qquad f_{rev} = 47.7 \text{ kHz}$ $- f_{rev}$: revolution frequency, $-\Delta_x, \Delta_y$: hor./vert. beam separation in IR – F_{crossing}, F_{hourglass}: numerical form factors, $\begin{array}{ll} F_{cross.}(285 \,\mu rad) \sim 0.8 & F_{cross.}(0) = 1 \\ 1 - F_{hourgl.} \sim 0.4\% & 1 - F_{hourgl.} \sim 38\% \end{array}$ F_{cross.}(285 μrad)~0.8 correct for the effect of the crossing angle and "hourglass" effect (strong final focus)
- LHC luminosity example:
 - 1 pilot/beam:
 - 1 nominal bunch/beam:
 - nominal beam:

- ~ 10²⁸ cm⁻² s⁻¹
- ~ 5.10³⁰ cm⁻² s⁻¹
- ~ 10³⁴ cm⁻² s⁻¹

general luminosity optimisation rules:

$$L = \frac{N^2 k f_{rev}}{4\pi \sigma_x \sigma_y} \cdot e^{-\frac{1}{4} \left[\left(\frac{\Delta x}{\sigma_x} \right)^2 + \left(\frac{\Delta y}{\sigma_y} \right)^2 \right]} \cdot F_{crossing} \cdot F_{hour \, glass} \cdot \dots$$

- decrease beam sizes σ_x , σ_v in interaction region (IR)
 - $\mathsf{F}_{\mathsf{h}\text{-glass}} \downarrow \downarrow \text{ (or } \sigma_{\mathsf{t}} \downarrow \text{ but } \mathsf{N} \downarrow \& \Delta \mathsf{E} \uparrow)$ stronger final focus
 - smaller emittance (negl. sync-rad.)
- increase total beam intensity I=Nk_{bunch}
 - more bunches k_{bunch} $F_{crossing} \downarrow \downarrow$ $F_{crossing} \downarrow \downarrow$
 - more intensity per bunch N
- minimise beam separation Δx , Δy
 - luminosity feedback in IRs

LHC Luminosity Optimisation – Beam Intensity

- increase total beam intensity I=Nk_{bunch}
 - higher radiation level/dose (lifetimes of devices)
 - N: number of charges per bunch,
 - limited by:
 - max. acceptable pileup N_{cross} of events per crossing

LHC:

 $N_{cross} \sim 20$

 $N_{cross} \sim 50$

- LHC nominal: (eg. $2N \rightarrow N_{cross} = 80$)
- − Phase₀ Luminosity upgrade: (β^* : 0.55→0.5 m & N_{bunch} 1.15 → 1.7 10¹¹)
- injector capability
- k_{bunch} : total number of bunches, (25 ns bunch spacing)

limited by:

- detector (tracker) speed, speed of beam diagnostics
- radio frequency system, more bunches/smaller spacing:
 - » requires high power klystrons and cavities (costs)
- electron cloud and multiple bunch instabilities

N_{cross}~6

Tevatron

(396 ns)

E-cloud not critical for Tevatron

- LHC:
 - Total beam intensity (performance) is limited by the capability to control particle losses into the superconducting aperture
 - Two system:
 - Collimation System (IR3 & IR7)
 http://lhc-collimation.web.cern.ch
 - captures slow particle losses, preventing quenches
 - more than background optimisation for the experiments
 - Machine Protection System (all LHC):
 http://lhc-mpwg.web.cern.ch
 - prevents damage to the machine due to accidental beam losses
 - ultra-reliable, failsafe system
 - SIL3 safety, one critical failures every ~ 10³ 10⁴ years (continuous mode, SIL=Safety-Integrity-Level)
 - Collimation/Protection System required during all operational phases
 - unprecedented in other machines

primary beam halo (BH₁) created by

experiments

(nominal parameters)

- beam-beam, intra beam scattering, electron cloud, noise, ...
- primary collimator: absorbs BH₁/creates BH₂
- secondary collimator: absorbs BH₂/creates BH₃
- tertiary collimator (absorber)
 - insertion quadrupole quench protection
 - and protection against accidental beam loss
 - (possible use for background minimisation)

LHC beam intensity requires low collimation inefficiency on the ~10⁻³ level)

 $Inefficiency = \frac{number of escaping protons}{number of impacting protons}$

- critically depends on the orbit and beam size stability
 - control beta-beat better than 20%
 - tight orbit stability requirement of $\sigma/3$ (~ 70 μ m @ coll. jaws)

Obtained from machine parameters:

$$L = \frac{N^2 k f_{rev}}{4\pi \sigma_x \sigma_y} \cdot e^{-\frac{1}{4} \left[\left(\frac{\Delta x}{\sigma_x} \right)^2 + \left(\frac{\Delta y}{\sigma_y} \right)^2 \right]} \cdot F_{crossing} \cdot F_{hour \, glass} \cdot \dots$$

- Either: Neutron flux calorimeter (at θ =0) and "Van der Meer" scan (variation of Δx , Δy)
- Or: measurement of ϵ and β_0 :

$$\sigma(s) = \sqrt{\frac{\epsilon \beta(s)}{\gamma_{rel}}}$$

 $\rightarrow \sigma_{x}, \sigma_{y}$

 $\rightarrow N$

- Fast bunch current transformer:
- Error (both dominated by systematics): ~ 5 10%
- Optical Theorem and total p-p cross-section: $\sigma_{total} = 4 \pi Im [f_{el}(-t=0)]$
 - Measure for $10^{-3} < t = (p\theta)^2 < 10 \text{ GeV}^2$ and extrapolate to 0 (5 µrad < θ < 500 µrad or 8.3 < $|\eta| < 12.9$)
- $\Delta L/L \approx 1\% \to \Delta t/t \approx 1\% \to \Delta \theta/\theta \approx \Delta x/x \approx 5.10^{-3} \qquad t = (p\theta)^2 \sim \frac{p^2}{\beta_0} \cdot x^2$
 - \rightarrow absolute beam position stability at roman pot (x_{min}~ 1mm) < 5 µm!!
 - Understanding of systematics and alignment play an important role

- ... numerous requirements on the beam orbit stability
 - Global:
 - Local:

(Collimation < 70 μ m, Totem: < 5 μ m)

- 0.2-0.5 mm (r.m.s.)
- < 70 µm

(Orbit stability is not an issue at Tevatron)

- Three important classes of beam perturbation:
 - Environmental: < 15 μm/s, ~500 μm/fill
 Machine Inherent: <25 μm/s, ~30 mm! (max) (largest contribution due to β' squeeze)
 Machine failures: <15 μm/s, ~2.7 mm (max) (failure of COD power converter)
- Exceptionally for hadron collider:
 - LHC beam positions have to be stabilised during all operational phases
 - Global orbit feedback @ 25 Hz (50 Hz) with ~1 Hz effective bandwidth
 - Involves more than 3000 active elements (robustness is an issue).

LHC Orbit Feedback Tests

- LHC Orbit Feedback Prototype successfully tested at the SPS in 2004
 - 6 LHC bunch-by-bunch based beam position monitor System
 - achieved <u>relative</u> orbit stability down to 2 μ m over several hours (~ 1/20 σ)
 - Relative stability fine for machine (collimation, protection)
 - However, BPM systematic offsets are dominant for absolute measurements
 - Stability limited by BPM noise/quality
 - The Tests give confidence that:
 - baseline architecture works
 - beam can be stabilised better
 than 50 μm at the collimator jaws

Integrated Luminosity

Integrated Luminosity L_{int}

$$L_{int} = \iint_{0}^{T} L(s, \epsilon, \dots, t) dt$$

- _ run time t_r ≈ 10 hours ("free" parameter)
- preparation time t_{p}
 - LHC magnet cycle
 - LHC injectors,
 - LHC detectors
 - ...
- beam lifetime τ
 - tune
 - tune spread
 - ...
 - (numerical aperture)
 - electron cloud

st order:
$$\langle L \rangle \approx L_0 \cdot \tau \cdot \frac{1 - e^{\frac{-t_r}{\tau}}}{t_r + t_p}$$

1

- Recipes to win the SUSY/Higgs Grandprix
 - optimise the machine (τ, tp)
- LHC is a joint team effort!

Conclusions

- SPS is ready to inject protons with nominal parameters into the LHC
- LHC accelerator has numerous challenges
 - beam energy and superconducting magnet technology (control of field errors)
 - control of beam losses into the superconducting aperture (collimation, machine protection)
 - control of accelerator and optics parameters
 - Numerous machine parameter that control beam lifetime
 - orbit, tune, tune spread, dynamic aperture, electron cloud, ...
- Many systems depend on the beam stability and BPM system
 - Detector for physics, collimation, measurement of optics
 - LHC Real-time Orbit Feedback system was tested at the SPS
 - Relative stability < 2 μ m over several hours @ 270 GeV in the SPS
 - Beam stability < 50 μ m seem to be reasonable for LHC Collimation
 - Issues: systematics, long-term quality of BPM data, reliability and robustness against failures

Reserve Slides

magnet errors are part of the real (experimental physicists) world

- e.g. dipole magnet and Q=n (n integer, no synchrotron damping for protons!):
 - field error accumulates and beam (orbit) growths linearly \rightarrow beam lost
- more general: particle are excited resonantly (order O) and lost if (m,n,p integer)

$$m Q_x + n Q_y = p$$
 and $O = |m| + |n|$

- avoid resonances up to O < 12th order
 - LHC injection: $Q_x = 64.28$ and $Q_y = 59.31$
 - LHC collision: Q_x =64.31 and Q_y =59.32

12th order tune diagram

1st + 2nd order resonances (red), 3rd order resonance (blue)

Special parallel to point focusing machine optic ($\beta_0 \approx 1600$ m)

- Roman Pots move close to the beam halo (~ 10 σ) and measure dN/dt down to: $t = (p \theta +)^2 \sim \frac{p^2}{2} \cdot x^2$

$$t_{min} = (p \theta_{min})^2 \sim \frac{p}{\beta_0 \beta_d} \cdot x_{min}^2$$

- Requires good knowledge on
 - Beta-functions $\beta_{_0}$ at IP and $\beta_{_d}$ at detector
 - Beam momentum p
 - minimum distance of roman pot x_{min} w.r.t. beam centre
- Desired: $\Delta L/L \approx 1\% \rightarrow \Delta t/t \approx 1\% \rightarrow \Delta \theta/\theta \approx \Delta x/x \approx 5 \cdot 10^{-3}$
 - \rightarrow absolute beam position stability at roman pot (x_{min}~ 1mm) < 5 µm!!
 - Understanding of systematics and alignment play an important role

• decrease beam sizes $\sigma(s)$ in interaction region (γ_{rel} =E/m, $\beta(s)$ optics function)

$$\sigma(s) = \sqrt{\frac{\epsilon \beta(s)}{\gamma_{rel}}}$$

LHC: pilot: ε ~ 1.0 μm rad nom.: ε ~ 3.8 μm rad Tevatron (p): ε ~ 3.3 μm rad

- either: $\beta^* \downarrow \downarrow$ = 'final focus', limited by
 - final focus quadrupole aperture (and peak field strength)
 - large β_{max} : more sensitive to field errors and failures (effects scale with β)
 - "hour glass" effect, once $\beta^* \sim$ bunch length σ_s (transverse bunch tails larger than waist)
- or: emittance $\epsilon \downarrow \downarrow$, ~ *"temperature"* of the bunches

(volume in phase space that is occupied by the particles)

- Protons:
 - synchrotron radiation negligible no damping as for leptons!
 - "active cooling" inefficient (esp. at high energies)
- produce low emittance ("cold") proton bunches at the source

- Gradual acceleration: p source \rightarrow LINAC2 \rightarrow PSB \rightarrow PS \rightarrow SPS \rightarrow LHC
- low emittance needs careful treatment already in injectors
- Low emittance proton source
- avoid emittance blow-up
 - Inject at higher energy (space charge critical)
 - minimise resonances and optimised acceleration (e.g. across the transition energy)

Tune Stability

- Required tune precision:
- Expected tune spread: $\Delta Q \sim 10^{-2}$ (mainly beam-beam induced)

 $\Delta Q < 10^{-3}$

- mostly predictable and/or reproducible from one run to another
- 1st day: compensation with dedicated 'trim quadrupoles'
 - standard measurement procedure:
 - "kick" = excite the beam and find the (fractional) tune peak in the Fourier spectrum of the beam position monitors' trajectory data
 - drawback:
 - emittance blow-up (kick puts energy into the bunch)
 - potentially dangerous with full nominal beam (oscillating bunches may hit the aperture/collimator jaws)
- later: LHC Tune Feedback, once emittance blow-up free tune measurements are operational

 Beam position monitor button signal A(t) and B(t) which are derrivatives of the bunch image on the vacuum chamber (gauss distributed)

- For more details:
 - D. Cocq, "The Wide Band Normaliser A New Circuit to Measure Transverse Bunch Position in Accelerators and Colliders", NIMA 416, Elsevier, 1998

29/22

Honnef Graduate's Seminar, Ralph.Steinhagen@CERN.ch, 2005-08-26

Bad

- BPMs are based on a wide-band-time-normaliser circuit
 - Linear within 1% w.r.t. BPM half aperture over large range of beam parameter
 - Small remaining dependence on:
 - bunch intensity (relatively small)
 - bunch length (more dominant in the SPS, monitors are LHC optimised)

similar to light optics: chromatic error

- ξ: 'chromaticity'
- intrinsic to every quadrupole in the machine
- increases beam footprint in tune diagram and causes resonances for offmomentum particles (target: ξ = +1 - 2)
- Decay and Snapback changes cromaticity up to 100 units
- Compensated by sextupole and higher multipole magnets

- Small bunch spacing:
 - crossing angle θ to avoid additional parasitic crossings
 - CMS: 25 ns spacing and θ =0: ~ 7 additional interaction regions
 - reduced overlap of bunches
 - "crab cavities" compensate this effect (e.g. KEKB):
 - rotate the bunches before and after the IR (required kick voltage KEKB ~1.44 MV@ β=100m, LHC: 144 MV @ β=2000m)

Luminosity: Hour Glass Effect

- Small beam sizes $\sigma(s)$ IR limited by final focus beta-function β_0 . (LHC: $\beta_0 = 0.55$ m)
 - max possible beta function around the detector
 - large β_{max} : more sensitive to field errors and failures (many effects scale with β)
 - max available final focus quadrupole gradient
 - 'hour glass' effect if β^* similar to bunch length σ_s :

counteract with shorter bunches:

protons: decrease ϵ_{s} while keeping $\epsilon_{x\!\prime\!\nu}$ constant or decreasing ... (not trivial)

- -> Mechanism of multi-pacting:
 - synchrotron light liberates electrons from the chamber wall
 - electrons are accelerated by the beam
 - hit vacuum chamber and generate more electrons
 - electron cloud causes instabilities and heat loss into the cryogenic environment

- Additional 'beam screen' inside vacuum pipe
- heat load on the beam screen increases
 - with number of particles per bunch
 - with reducing bunch spacing

Vacuum pipe

50 mm

delta_max: secondary electron yield property of the screen

Cooling

Total p-p Cross Section

LHC
$$\sigma_{tot} = 111.5 \pm 1.2 + 4.1 \text{ mb}$$

LHC orbit feedback system

- Small perturbations around the reference orbit will be continuously compensated using beam-based alignment through a central global orbit feedback system. The system consists of:
 1056 beam position monitors (BPM)
 Measure in both planes: > 2112 readings!
 - One Central Orbit Feedback Controller (OFC)
 - Gathers all BPM measurements, computes and sends currents through Ethernet to the PC-Gateways to move beam to its reference position:
 - high numerical and network load on controller front-end computer
 - rough machine model sufficient for steering
 - flexible
 - easier to commission and debug
 - 530 correction dipole magnets (CODs)/plane
 - Bandwidth (for small signals): f_{bw}≈ 1-2 Hz (defines total feedback limit)
 - Involves more than 3000 active elements!
 - feedback robustness is important for availability of the accelerator
 - Designed to be insensitivity to noise, errors, machine optic uncertainties_{37/22}