

APC meeting, October 1st, 2004 LHC BPMs for Real time orbit measurement

Experience with the LHC BPMs for Real time orbit measurement

Ralph J. Steinhagen,

Geneva, 2004-10-01

- orbit stability
 - Coasting beam
- systematic errors due to:
 - bunch length
 - Intensity
 - Injection pattern
- Control issues
 - 100k turn and orbit acquisition

coasting beam – MD 20040825 "good" example: SSC #0136716 (start at 11:45:49)

coasting beam – MD 20040825 "bad" example (5/12 total): SSC #0137538 (start at 15:37:01)

coasting beam – MD 20040825 orbit stability: SSC #0136716 ("normal" case)

- Short term stability (over 10 s):
 - H: 48 μm
 - V: 6 μm

- long term stability (over full coast):
 - H: 76 μm
 - V: 59 μm
 - dominated by slow drifts
- not a Gaussian process (fits are approximations)

coasting beam – MD 20040825 FFT of orbit position: SSC #0136716 ("normal" case)

- Low frequency (power) spectrum increases with 1/f²
 - Typical for drifts of magnets and random ground motion
- For high frequency no signal structure visible ('white noise')
 - horizontal and vertical residual noise (power) is one (two) magnitude larger (beam or BPM effect?)
- Vertical plane (all BPMs):
 - beam noise $\pm 15 \ \mu m @ \sim 0.1 \ Hz$

(source not yet identified, unlikely an aliasing effect)

Systematic LHC BPM errors

 From the electronics design one expects systematic errors on the level of 1-2% of the half aperture as described in:
D. Cocq*: "The wide band time normaliser – a new circuit to measure transverse bunch positions in accelerators and colliders", NIM A416, 1998

dependence on the bunch length:

dependence on the intensity:

• *Daniel Cocq, formerly SL/BDI, retired

Systematic LHC BPM errors position dependency on bunch length

• Change of the bunch length at 26 GeV by changing the RF voltage

Systematic LHC BPM errors position dependency on intensity

• BPM.515-V: difference orbit (net effect due to intensity change)

LHC BPM errors position dependency on injection pattern

- data taken during 'Scrubbing run' (10 Hz sampling)
- Orbit distribution over 5900 cycles at BPMB.515-H
- Injection: change of total intensity, but intensity p. bunch is constant
- The measured position jump (~ 100 μ m) at each injection is visible
- source not yet identified

Some control issues 100k turn and orbit acquisition

- 100k turn and orbit acquisition share the same hardware (WBTN, DAB)
 - Similar 100k buffers for post-mortem, 100k and orbit (orbit acquisition does some further pre-processing though)
 - common shared gain intensity settings
 - same triggers retrieval mechanisms
- One front-end computer for both data streams:
 - Presently: interference between 100k turn and orbit acquisition
 - block each other on OS level
 - data delivery of 100k turn data causes gaps (long delays) in RT acquisition (awkward for RT control)
 - 1 BPM 64k turns = ~500kb data
 - cause a ~ 400 ms long blindness of the RT orbit
 - Future: 18 BPM per crate
 - -> 18*400 ms = 7.2 s long unavailability of RT orbit????

- The horizontal/vertical stability of the orbit during coast (estimates)
 - within 10 s: 48 μm / 6 μm
 - over coast: 76 μ m / 59 μ m
 - with feedback @ 25 Hz (based on 2003 experiences): ~30 μ m (or better)
- The beam based measured non-linearities due to bunch length variation and bunch intensity change are consistent with the predicted 1-2% based on the electronic design
- present BPM front-end shows (at least partial) mutual exclusion between 100k turn and orbit acquisition (100k turn blocks the orbit readout! and vice versa in certain conditions) – must be solved for the LHC
- ToDo's :
 - Future MD's till end of this run:
 - Study of systematics:
 - bunch length vs. orbit position
 - orbit position shift vs. Intensity vs. orbit position
 - separation of BPM from "real" beam effects
 - Improvements of real-time parameters (constant delays, reliability...)