

Graduate's Seminar of the RWTH Aachen: "Experiments of Particle Physics at the present time"

LHC Orbit Feedback Control Ralph J. Steinhagen,

Accelerators & Beams Department, CERN and 3rd Inst. of Physics, RWTH Aachen, *Bad Honnef, 2004-09-05*

Outline

- Introduction
- The Large Hadron Collider
 - Superconducting main dipole magnets
 - LHC Cleaning System
- LHC Orbit Feedback System
 - Feedback design
 - Space
 - Time
 - Results from SPS prototype studies
- Conclusions

- The Large Hadron Collider (LHC) is CERN's next generation of proton-proton collider that will be installed in the former LEP tunnel, which has an average depth of 100 m and a circumference of 27 km.
- In order to verify and explore new aspects of the standard model and other theories, the LHC will store, accelerate and collide two proton beams:

—	max (inj.) energy p.p.:	E =	7 (0.45)	TeV
	nominal luminosity:	L =	~10 ³⁴	CM ⁻² S ⁻¹

 Choice for protons is a consequence of strong dependence of the synchrotron radiation losses on the mass of the particle and available RF voltage (< 100 MV):

$$\Delta E_{s-rad.} = \frac{q^2}{3\epsilon_0} \cdot \frac{1}{\left(m_0 c^2\right)^4} \cdot \frac{E^4}{\rho} \longrightarrow \frac{\Delta E_{proton}}{\Delta E_{electron}} = \left(\frac{m_e c^2}{m_p c^2}\right)^4 \approx 10^{-15}$$

(ΔE : energy loss per turn; q: charge; m_{0} :mass of particle; ρ : bending radius; E: initial energy of the particle)

Synchroton losses per turn @ 7 TeV: 7 keV (proton) vs. 700 PeV (leptons)

The Large Hadron Collider Aerial view

The Large Hadron Collider general layout

- eight-fold symmetry:
 - eight arcs interleaved with straight sections for:
 - Machine elements (RF, BI, Cleaning System, Beam dump...)
 - Detectors in the crossing sections (CMS, ATLAS, Alice and LHC-b)
- two beams:
 - separate vacuum pipes for most parts of the machine
 - advantage of being widely independent and individually tuneable

The Large Hadron Collider general FODO arc layout

- 1278 main dipole magnets cover the ~27 km circumference
 - -> keep the beams on their circular design trajectory
- Interleaved with:
 - Focusing (QF) and defocusing (QD) quadrupoles
 -> create betatron oscilations
 - Orbit correction Dipoles (CODs)
 - -> compensate quadrupole offsets and other misaligments
 - Sextupole, Octupole, ..., Dodecapole
 - -> control of chromaticity and higher order non-linearities
 - [..]
 - Beam instrumentation: position (BPM), beam loss, emittance monitors,...

The Large Hadron Collider main dipole magnets

• The required magnetic field in order to keep counter rotating charged particles on a circular trajectory:

$$B = \frac{1}{q} \cdot \frac{p}{\rho}$$

- momentum p = 7 TeV/c
- − radius $ρ = ρ_{LEP} \approx 3 \text{ km}$
- charge q
 - -> B = 8.33 Tesla

Present normal conducting magnets only up to ~ 2 T

-> LHC main dipole (& most other) magnets are superconducting

The Large Hadron Collider *instancing: main dipole magnets*

'2-in-1' design:

- One magnet with two opposite fields for the two circulating beams
- most equipment kept in the same cryostat

Parameters

Operating Temperature	1.9	K
Magnetic Length	14.3	Μ
Inductance	0.11	H
Nom Field at 7 TeV	8.33	Т
Nom. Current	11850	А
Bending Radius ρ	2804	Μ
Bending Angle	5.1	Millirad
Stored Energy	7.5	MJ
Quench Limit* at 7 TeV	30	mJ/cm^3

*For fast losses on the ms scale

The Large Hadron Collider *main dipoles in tunnel*

The Large Hadron Collider main dipoles in tunnel

The Large Hadron Collider main dipole: *quench*

- Superconductivity is lost if:
 - magnetic field
 - current density
 - or temperature
 exceed their critical
 - parameter
 - -> quench
- dominant cause for quenches:
 - temperature increase due to particle absorption

 for main dipole magnets, energy deposition within 10-20 ms must not exceed:

 $\approx 30 \frac{mJ}{cm^3}$

The Large Hadron Collider Beam Energy

- each of the LHC beams:
 - 2808 bunches x 1.1 * 10¹¹ protons per bunch x 7 TeV per proton
 - beam sizes 0.4 1.0 mm (in the arcs)

-> total beam energy
 ~ 350 MJ
 -> beam energy density
 ~ 5.6 GJ/mm²

- sufficient to quench all LHC magnets at once if evenly distributed
- disassemble magnets and other equipment
- The beam dumps are the only elements surviving a full beam impact

The Large Hadron Collider Beam losses

- The 350 MJ can be released within:
 - milli to micro second (1 20 turns !!!)
 - Equipment malfunction etc.
 - in the vacuum chamber
 - Residual beam gas
 - Electron cloud effects
 - Long range beam-beam
 - Non-linearities of accelerator optics
 - few hours
 - Interactions at the collision points inside the detectors
 - normal diffusion processes

-> Accelerator has to be screened from those losses!

machine protection working group: collimation working group:

Ihc-mpwg.web.cern.ch Ihc-collimation.web.cern.ch

The Large Hadron Collider Collimation – first line of protection

removes the high amplitude particles before they may be lost in the cryogenic aperture
 Consists of two stages

- Primary collimator:
 - light material (low Z) in order to survive primary beam impact
 - scatters the particle into primary beam halo
- Secondary collimator:
 - Intercepts (absorbs) the scattered particles of the primary beam halo
- (Tertiary collimator, absorber near experiments for protection)

LHC Orbit Feedback Control Collimation requirements

• Cleaning inefficiency depends critically on the beam position error in the collimator section:

 Cleaning inefficiency = number of escaping protons / number of impacting protons

• Max. allowed cleaning inefficiency [%]: ~ 10^{-3} -> beam position (closed orbit) stabilised within ~ 0.4 $^{\circ}$ @ 7 TeV (β = 30/180 m) ~ 44 - 120 μ m

LHC Orbit Feedback Control beam movement?

- two classes of orbit movement:
 - Environmental (through moving quadrupoles):
 - ground motion
 - expanding and contracting magnet girders due to changes of
 - temperature
 - air pressure
 - other effects....
 - -> expected drift velocities smaller than

< 10 µm/s

- machine inherent:
 - decay & snapback of magnet's multipole momenta (main dipole moment is dominant)
 - optics changes: e.g. squeeze of beam in insertions
 - persistent currents in the vacuum chamber wall
 - dynamic effects: ramp, beam-beam
 - machine element failures (power converter and magnet dropouts)
- -> largest contribution, perturbations up to ('x' is scalable within limits)

20 mm/(x minutes)

 role of the future LHC Orbit Feedback System: minimisation of closed orbit perturbations

 $x_i(t) = x_{reference_i} = const$

- LHC: first proton collider where a continuous control of the beam position is required during all operational phases
- In each plane, the beam position of the two LHC rings is sampled by ≈ 1100 beam position monitors (BPMs) and is controlled by ≈ 600 correction dipole magnets (CODs) that are individually powered
- Since all equipment is distributed over the 26.7 km circumference, data exchange between a central feedback controller and the BPMs and CODs is an important issue.

LHC Orbit Feedback Control Feedback Design

- The control of the orbit $\Delta x_i(t)$ with CODs is described by the beam response matrix R_{ij} to dipole kicks δ_j and by the dynamics of the electrical circuit and power converter of the CODs $\delta_i = \delta_i(t)$.
- To simplify the problem the coupled differential equation system are separated into space and time domain and solved independently using techniques from control theory and linear algebra:
 - beam position at the ith monitor due to a dipole kick d of the jth COD

$$\Delta x_i(t) = \sum_{ij}^n R_{ij} \cdot \delta_j(t)$$

– Simplified COD response ('O(1)') due to an external excitation $E_i(t)$:

$$\ddot{\delta}_{j}(t) + 2\zeta_{j}\omega_{0j}\dot{\delta}_{j}(t) + \omega_{0j}^{2}\delta_{j} = E_{j}(t)$$

(R_{ii}:orbit response matrix, ζ : damping, $\omega_{0:}$ eigen-frequency)

LHC Orbit Feedback Control solution in space

- find pseudo-inverse orbit response matrix <u>R</u>⁻¹ of <u>R</u>= (R_{ij}), while keeping feasibility constraints (saturation and rate limit of COD power converter etc.)
 - Stopped Gauss' (*MICADO*):
 - starting with most dominant pivot element and stop once defined convergence limit is reached.
 - Singular Value Decomposition (SVD):
 - decomposition of <u>R</u> into eigen states <u>V</u>, corresponding eigen value matrix <u>S</u> = diag($\lambda_1, ..., \lambda_n$) and unitary matrix <u>U</u>

 $- \underline{R} = U S V^{T} \qquad -> \qquad \underline{R}^{-1} = \underline{U}^{T} \operatorname{diag}(1/\lambda_{1}, 1/\lambda_{2}, ...) \underline{V}$

- easy elimination of near singular solutions (if $(\lambda_1 \sim 0) ' 1/\lambda_i = 0$)
- Solution yield steady state deflections: $\delta = (\delta_0, \delta_1, \dots, \delta_m)$

LHC Orbit Feedback Control solution in time

- Design of a controller that sends excitation signals (reference currents) E_j(t) to the power converter that optimise the rise time
- Laplace transformation to COD response equation yields

$$G(s) = \frac{\omega_0^2}{s^2 + 2\zeta \omega_0 s + \omega_0^2}$$

 We chose zero-pole matching of the dominant plant poles: Compensation using zeros of a PID controller (gains K_p, K_i and K_d) :

$$D(s) = K \left(K_p \cdot 1 + \frac{K_i}{T_i s} + K_d \cdot T_d s \right)$$

• Resulting K_p and K_d with K_i as free parameter:

$$K_p = \frac{2\zeta}{\omega_0 T_s} K_i \wedge K_d = \frac{1}{\omega_0^2 T_s^2} K_i$$

LHC Orbit Feedback Control Controller Design

• Real implementation: addition pole due to sampling T_s transport lag T_c , network T_{net} and front-end OS T_{misc} delay:

$$G_{delay}(s) = \frac{1}{\lambda \cdot S + 1} \wedge \lambda = T_s/2 + T_c + T_{net} + T_{misc}$$

- Foreseen:
 - 'Smith-Predictor' extension of the PID to compensate the delay pole
 - Subtract simulated difference of plant with and without delay from Δx
 - G(s) and λ have to precisely known and constant
 - 'real-time' constraints

LHC Orbit Feedback Control SPS *Test Setup*

- For the SPS prototype studies:
 - 6 dedicated position monitors (*BPMBs*) with full LHC acquisitionin LSS5
 - Power converters of CODs have been enabled to receive real-time reference current changes.
 - The pre-processed BPMB data is sent from the surface building BA5 over Ethernet connection to the Prevessin Control Room (PCR) to a PC that houses the controller performing the correction and sends the steering data back to the COD power converter controller.

LHC Orbit Feedback Control SPS Test Setup

LHC Orbit Feedback Control *Results I/II*

Steering example with additional external noise:

LHC Orbit Feedback Control Results II/II

- Feedback loop showed an average good performance
 - SPS system:
 - Stabilised the beam at 4 BPMB
 - Max. feedback sampling frequency 100 Hz
 - position within 8.5 μm

- The LHC requires excellent control of particle losses in order to protect the cryogenic magnets in the presence of a high intensity beam.
- Performance of LHC Cleaning System depends critically on the beam position stability that has to be stabilised by the real-time Orbit Feedback System.
- First order controller model and design established
- Tests of the LHC BPM acquisition system and development of the SPS orbit feedback prototype:
 - max. feedback frequency 100 Hz (enough for targeted 25 Hz)

26/27

– beam within 8.5 μ m locally stabilised in the SPS

LHC Orbit Feedback Control Outlook

- more work/studies on:
 - beam movement sources
 - Ground motion
 - Magnetic misalignments (Decay & Snapback)
 - BPM systematics and possible compensations
 - Intensity
 - bunch length
 - injection pattern
 - machine failure modes and retaliatory actions of the feedback
 - Further 'test bed' (accelerator simulation) development and matching with real machine measurements
 - Improvement of feedback loop and its test (in the test bed environment)
 - a lot more to do till machine startup in 2007....

I thank for their kind support during my studies and work:

Prof. A. Böhm, the 3. Institute of Physics, RWTH Aachen Dr. J. Wenninger for his support and supervision

The many colleagues in AB-OP, AB-BDI, AB-PO, AB-CO, AB-RF, IT and AT for their fruitful discussions, helps, hints and contributions

28/27

you for your attendance and attention!

Accelerator MINI-HOWTO

'For an accelerator, one needs..."

- particle source (injector)
- Radio-frequency (RF) cavities
- Main dipole magnets (MB)
- Fast pulsed kicker magnet
- Quadrupole magnets (QD & QF)
- [..]
- Dodecapole magnets
- Instrumentation: beam position, loss, intensity, longitudinal and transverse profile, phase relations, luminosity ...
- the particle detectors
- Control strategy

and much more....

LHC Orbit Feedback Control OFC Test Bed

- Test bed: complement to the Orbit Feedback Controller (OFC)
 - Accelerator analogue to the Monte Carlo simulation of the detectors
 - Simulates the open loop and orbit response of COD->BEAM->BPM
 - BPM systematics (non-linearities, noise, calibration...)
 - correct dynamic behaviour of the PC + magnet circuit
 - Other higher order effects
 - Same data delivery mechanism and encoding as in the real front-end
 - transparent for the OFC
 - simple "offline" debugging for OFC
 - Real-time and SMP: runs at up to 128 Hz (1 kHz) for a full LHC (SPS) orbit simulation
 - OFC implementations can be tested and validated under various scenarios

LHC Orbit Feedback Control Groundmotion

- During collision ground motion will contribute most to closed orbit movements.
- Each off-centred quadrupole introduce a dipole kick $\delta_i(t)$ and moves the beam:

 $\Delta \mathbf{x}_{i} = \mathbf{R}_{ij} \ \delta_{j}(t)$

- R_{ij}: orbit response matrix, describes the relation of the dipole kicks of the j-th magnet on the beam position measured at the i-th monitor
- random ground motion is enhanced by the accelerator:

- LHC: $S_{orbit} \sim 35 S_{gm}$

 (S_{orbit}, S_{am}) : power spectrum of the orbit / ground motion)

•	requirements	on	the	orbit	position:
---	--------------	----	-----	-------	-----------

- Global (r.m.s)

 physical machine aperture and operation 	500 μm
 minimisation of electron cloud/ (Preserving the 'scrubbing efficiency') 	200 μm
Local (absolute):	
 centering the beam at the dampers 	< 200 μm
 collimation section (IR 3 & 7) (cleaning efficiency is depends on the beam position) 	< 70 µm
 pre-alignment for the luminosity feedback (preserving dynamic range of its ADC) 	< 70 μm
TOTEM experiment (tough!)	< 10 µm

- BPMs: ~1100, over the two rings distributed (controlled by approximately 80 front-end crates)
 - Each measure horizontal and vertical position
 - Redundancy (to a certain extend), sampling at high and low β
 - Measurement precision: 200 μm/shot -> closed orbit (255 turns) ~5 μm
 possible (tested) sampling rates up to 100 Hz
- CODs: Both rings (H&V) are equipped with about ~600 individually powered correction dipole magnets (controlled by approximately 40 front-end crates)
 - Maximum kick strength ($\delta_{max} p$): 570 µrad TeV/c
 - natural time constants of magnets:
 - cold magnets (most)
 - warm magnets (only a few)
 - Power converter steers with effective bandwidth f_b of $\sim 1 \text{ Hz}$
 - -> the PC can generate (compensate) orbit oscillations (at high β)
 - \sim 13 μ m @ 1 Hz
 - access rate is limited to $f_s=50$ Hz, determines max. feedback frequency!

200 s

 $10 \, s$

EXAMPLE CONDITION COD response – Bode Plot

• Measurement (dashed) and fit $\omega_0 = 14$ Hz and $\zeta = 0.52$ (solid lines)

 Iuminosity depends on the position of both beams in the IR:

$$L = \frac{N_1 N_2 f_{rev} k_{bunch}}{2 \pi \sqrt{(\sigma_{x_1}^2 + \sigma_{x_2}^2)(\sigma_{x_1}^2 + \sigma_{x_2}^2)}} \cdot e^{-\left[\frac{(\bar{x}_1 - \bar{x}_2)^2}{2(\sigma_{x_1}^2 + \sigma_{x_2}^2)} + \frac{(\bar{y}_1 - \bar{y}_2)^2}{2(\sigma_{y_1}^2 + \sigma_{y_2}^2)}\right]}$$

LHC Orbit Feedback Control

BPMB response - Calibration

• BPMB calibration using the neighbouring SPS monitors in order to match $X'(s) = X(s) \iff M(s) := 1$

- In this particular case, the magnitude of the slope and its sign shows that this BPMB has a sign error that has to be taken into account.
- The BPM further introduces a sampling delay
- Successful tested for sampling rates up to 100 Hz.

LHC Orbit Feedback Control, Bad Honnef Graduate's Seminar, 2004-09-05 Ralph. Steinhagen@CERN.ch, III. Inst. of Physics RWTH-Aachen and CERN AB-OP-SPS

The Large Hadron Collider

Beam Energy

- each of the LHC beams:
 - 2808 bunches x 1.1 * 10¹¹ protons per bunch x 7 TeV per proton
 - beam sizes 0.4 1.0 mm (in the arcs)
 - -> ~ 350 MJ -> ~ 5.6 GJ/mm²

- Beam Energy is equivalent to:
 - heat from cryogenic temperature and melt of 500 kg Cupper
 - chemical energy of
 - 24 kg sugar
 - 8 I of gasoline
 - 95 kg TNT
 - sufficient to quench all LHC magnets at once if evenly distributed
 - disassemble magnets and other equipment

